Synthesis 2018; 50(04): 785-792
DOI: 10.1055/s-0036-1588547
paper
© Georg Thieme Verlag Stuttgart · New York

Multicatalytic Enantioselective Borrowing Hydrogen δ-Lactonization Strategy from β-Keto Esters and Allylic Alcohols

Adrien Quintard*
Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13013, France   Email: adrien.quintard@univ-amu.fr
,
Mylène Roudier
Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13013, France   Email: adrien.quintard@univ-amu.fr
,
Jean Rodriguez
Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13013, France   Email: adrien.quintard@univ-amu.fr
› Author Affiliations
The Centre National de la Recherche Scientifique (CNRS) and the Aix-Marseille Université (AMU), The Agence Nationale pour la Recherche (ANR-13-PDOC-0007-01) are gratefully acknowledged for financial support.
Further Information

Publication History

Received: 15 June 2017

Accepted after revision: 19 July 2017

Publication Date:
07 September 2017 (online)


Published as part of the Bürgenstock Special Section 2017 Future Stars in Organic Chemistry

Abstract

By combining an iron-catalyzed borrowing hydrogen of allylic alcohols with an enantioselective organocatalyzed Michael addition of β-keto esters followed by a subsequent DBU-promoted lactonization different enantioenriched δ-lactones have been synthesized with good enantioselectivities. The valuable building blocks, featuring in some cases challenging quaternary stereocenters, have been obtained with >90% ee.

Supporting Information

 
  • References


    • For pioneering work on borrowing hydrogen, see:
    • 1a Guerbet M. C. R. Acad. Sci. 1909; 49: 129

    • For reviews on the topic, see:
    • 1b Hamid MH. S. A. Slatford PA. Williams JM. J. Adv. Synth. Catal. 2007; 349: 1555
    • 1c Nixon TD. Whittlesey MK. Williams JM. J. Dalton Trans. 2009; 753
    • 1d Dobereiner GE. Crabtree RH. Chem. Rev. 2010; 110: 681
    • 1e Watson AJ. A. Williams JM. J. Science 2010; 329: 635
    • 1f Gunanathan C. Milstein D. Science 2013; 341: 1229712
    • 1g Obora Y. ACS Catal. 2014; 4: 3972
    • 1h Yang Q. Wang Q. Yu Z. Chem. Soc. Rev. 2015; 44: 2305

      For a highlight and review on this challenging topic, see:
    • 2a Hollmann D. ChemSusChem 2014; 7: 2411
    • 2b Quintard A. Rodriguez J. Chem. Commun. 2016; 52: 10456
    • 2c Bauer I. Knölker H.-J. Chem. Rev. 2015; 115: 3170

    • For examples of enantioselective borrowing hydrogen transformations, see:
    • 2d Shermer DJ. Slatford PA. Edney DD. Williams JM. J. Tetrahedron: Asymmetry 2007; 18: 2845
    • 2e Putra FE. Oe Y. Ohta T. Eur. J. Org. Chem. 2013; 6146
    • 2f Kovalenko OO. Lundberg H. Hübner D. Adolfsson H. Eur. J. Org. Chem. 2014; 6639
    • 2g Zhang Y. Lim C-S. Boon Sim DS. Pan H-J. Zhao Y. Angew. Chem. Int. Ed. 2014; 53: 1399
    • 2h Rong Z-Q. Zhang Y. Chua RH. B. Pan H-J. Zhao Y. J. Am. Chem. Soc. 2015; 137: 4944
    • 2i Peña-López M. Neumann H. Beller M. Angew. Chem. Int. Ed. 2016; 55: 7826
    • 2j Yang LC. Wang Y-N. Zhang Y. Zhao Y. ACS Catal. 2017; 7: 93

    • For other type of enantioselective hydrogen transfer initiated reactions, see:
    • 2k Larsson AL. E. Perssonn BA. Bäckvall JE. Angew. Chem., Int. Ed. Engl. 1997; 36: 1211
    • 2l Moran J. Krische MJ. Pure Appl. Chem. 2012; 84: 1729 ; and references cited therein
    • 3a Chiu P. Leung LT. Ko CB. B. Nat. Prod. Rep. 2010; 27: 1066
    • 3b Florence GJ. Gardner NM. Paterson I. Nat. Prod. Rep. 2008; 25: 342
    • 3c Boucard V. Broustal G. Campagne J.-M. Eur. J. Org. Chem. 2007; 225

    • For examples of spirolactones, see:
    • 3d Fan Y. Zhang H. Zhou Y. Liu H. Tang W. Zhou B. Zuo J. Yue J. J. Am. Chem. Soc. 2015; 137: 138
    • 3e Oh H. Gloer JB. Shearer CA. J. Nat. Prod. 1999; 62: 497
    • 3f Stierle DB. Stierle AA. Bugni T. J. Org. Chem. 2003; 68: 4966
    • 3g Elger W. Beier S. Pollow K. Garfield R. Shi SQ. Hillisch A. Steroids 2003; 68: 891
    • 3h Bister B. Bischoff D. Strobele M. Riedlinger J. Reicke A. Wolter F. Bull AT. Zahner H. Fiedler HP. Sussmuth RD. Angew. Chem. Int. Ed. 2004; 43: 2574
    • 4a Peed J. Periñán Domínguez I. Davies IR. Cheeseman M. Taylor JE. Kociok-Köhn G. Bull SD. Org. Lett. 2011; 13: 3592
    • 4b Cao H. Parker KA. Org. Lett. 2008; 10: 1353
    • 4c El-Awa A. Mollat du Jourdin X. Fuchs PL. J. Am. Chem. Soc. 2007; 129: 9086
    • 4d Davies SG. Nicholson RL. Smith AD. Org. Biomol. Chem. 2004; 2: 3385
    • 4e Kotha S. Deb A. Lahiri K. Manivannan E. Synthesis 2009; 165
    • 4f Rios R. Chem. Soc. Rev. 2012; 41: 1060
    • 4g D’yakonov VA. Trapeznikova OA. de Meijere A. Dzhemilev UM. Chem. Rev. 2014; 114: 5775
    • 4h Bartoli A. Rodier F. Commeiras L. Parrain J-L. Chouraqui G. Nat. Prod. Rep. 2011; 28: 763
    • 5a Quintard A. Constantieux T. Rodriguez J. Angew. Chem. Int. Ed. 2013; 52: 12883
    • 5b Roudier M. Constantieux T. Quintard A. Rodriguez J. Org. Lett. 2014; 16: 2802
    • 5c Roudier M. Constantieux T. Rodriguez J. Quintard A. Chimia 2016; 70: 97

      For a review on the iron complex used herein, see:
    • 6a Quintard A. Rodriguez J. Angew. Chem. Int. Ed. 2014; 53: 4044

    • For selected examples, see:
    • 6b Knölker H.-J. Heber J. Mahler CH. Synlett 1992; 1002
    • 6c Knölker H.-J. Baum E. Heber J. Tetrahedron Lett. 1995; 36: 7647
    • 6d Knöker H.-J. Baum E. Goesmann H. Klauss R. Angew. Chem. Int. Ed. 1999; 38: 2064
    • 6e Casey CP. Guan H. J. Am. Chem. Soc. 2007; 129: 5816
    • 6f Thorson MK. Klinkel KL. Wang J. Williams TJ. Eur. J. Inorg. Chem. 2009; 295
    • 6g Moyer SA. Funk T. Tetrahedron Lett. 2010; 51: 5430
    • 6h Coleman MG. Brown AN. Bolton BA. Guan H. Adv. Synth. Catal. 2010; 352: 967
    • 7a Marigo M. Wabnitz TC. Fielenbach D. Jørgensen KA. Angew. Chem. Int. Ed. 2005; 44: 794
    • 7b Hayashi Y. Gotoh H. Hayashi T. Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
    • 8a Carlone A. Marigo M. North C. Landa A. Jørgensen KA. Chem. Commun. 2006; 4928
    • 8b Cabrera S. Aleman J. Bolze P. Bertelsen S. Jørgensen KA. Angew. Chem. Int. Ed. 2008; 47: 121
    • 8c Lathrop SP. Rovis T. J. Am. Chem. Soc. 2009; 131: 13628

      For examples of spirolactonization, see:
    • 9a Beugelmans R. Bull. Soc. Chim. Fr. 1994; 131: 1019
    • 9b Santos MR. L. Barreiro EJ. Braz-Filho R. Fraga CA. M. Tetrahedron 2000; 56: 5289
    • 9c Liu Y. Hu H. Zheng H. Xia Y. Liu X. Lin L. Feng X. Angew. Chem. Int. Ed. 2014; 53: 11579
    • 10a Roudier M. Constantieux T. Quintard A. Rodriguez J. ACS Catal. 2016; 6: 5236

    • For other examples of copper co-catalyzed activation, see:
    • 10b Afewerki S. Breistein P. Pirttila K. Deiana L. Dziedzic P. Ibrahem I. Cordova A. Chem. Eur. J. 2011; 17: 8784
    • 10c Ibrahem I. Breistein P. Cordova A. Angew. Chem. Int. Ed. 2011; 50: 12036
    • 10d Ibrahem I. Santoro S. Himo F. Cordova A. Adv. Synth. Catal. 2011; 353: 245
    • 10e Wei Y. Yoshikai N. J. Am. Chem. Soc. 2013; 135: 3756
    • 10f Ceban V. Putaj P. Meazza M. Pitak MB. Coles SJ. Vesely J. Rios R. Chem. Commun. 2014; 50: 7447
    • 10g Meazza M. Ceban V. Pitak MB. Coles SJ. Rios R. Chem. Eur. J. 2014; 20: 16853
    • 10h Quintard A. Rodriguez J. Chem. Commun. 2015; 51: 9523
    • 10i Quintard A. Rodriguez J. Chem. Eur. J. 2015; 21: 14717
  • 11 We are not aware of such challenging lactonization on non-substituted keto esters.