Synthesis 2017; 49(24): 5351-5356
DOI: 10.1055/s-0036-1588553
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of the Tripeptide Antibiotic Resormycin

Rahul D. Kaduskar
a   Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy   Email: loana.musso@unimi.it
,
Andrea Pinto
a   Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy   Email: loana.musso@unimi.it
b   Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
,
Leonardo Scaglioni
a   Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy   Email: loana.musso@unimi.it
,
a   Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy   Email: loana.musso@unimi.it
,
Sabrina Dallavalle
a   Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy   Email: loana.musso@unimi.it
› Author Affiliations
Further Information

Publication History

Received: 08 June 2017

Accepted after revision: 26 July 2017

Publication Date:
28 August 2017 (online)


Abstract

A short and efficient synthesis of resormycin, a metabolite of Streptomyces platensis MJ953-SF5 with herbicidal and antifungal activity, is described. The key step in our synthetic approach is a late-stage stereospecific dehydration of a β-hydroxy amino acid to install the Z-olefin. Because of the modular nature of the synthesis, access to analogues for biological evaluation is readily available.

Supporting Information

 
  • References

  • 1 Newman DJ. Cragg GM. J. Nat. Prod. 2016; 79: 629
  • 2 Igarashi M. Kinoshita N. Ikeda T. Kameda M. Hamada M. Takeuchi T. J. Antibiot. 1997; 50: 1020
  • 3 Yamazaki Y. Someno T. Igarashi M. Kinoshita N. Hatano M. Kawada M. Momose I. Nomoto A. J. Antibiot. 2015; 68: 279
  • 4 Abe H. Yamazaki Y. Sakashita C. Momose I. Watanabe T. Shibasaki M. Chem. Pharm. Bull. 2016; 64: 982
  • 5 Yokokawa F. Shioiri T. Tetrahedron Lett. 2002; 43: 8679
  • 6 Shibata N. Baldwin JE. Jacobs A. Wood ME. Tetrahedron 1996; 52: 12839
  • 7 Mahajan T. Kumar L. Dwivedi K. Agarwal DD. Ind. Eng. Chem. Res. 2012; 51: 3881
  • 8 Yajima A. Urao S. Yoshioka Y. Abe N. Katsuta R. Nukada T. Tetrahedron Lett. 2013; 54: 4986
  • 9 Corcoran JP. T. Kalindjian SB. Borthwick AD. Adams DR. Brown JT. Taddei DM. A. Shiers JJ. WO 2011027106, 2011
  • 10 Baryza JL. Beckwith RE. J. Bowman K. Byers C. Fazal T. Gamber GG. Lee CC. Tichkule RB. Vageese C. Wang S. West L. Zabawa T. Zhao J. WO 2014136086, 2014
  • 11 Benoit MR. Lienard LE. Horsfall MG. Frere J. Schofield JC. Bioorg. Med. Chem. Lett. 2007; 17: 964
  • 12 Dhavan AA. Kaduskar RD. Musso L. Scaglioni L. Martino PA. Dallavalle S. Beilstein J. Org. Chem. 2016; 12: 1624
  • 13 Chen B. Nie J. Singh M. Pike VW. Kirk KL. A. J. Fluorine Chem. 1995; 75: 93
  • 14 Arhart RJ. Martin JC. J. Am. Chem. Soc. 1972; 94: 5003
  • 15 Yokokawa F. Shioiri T. Tetrahedron Lett. 2002; 43: 8673
  • 16 Hayakawa Y. Kato H. Uchiyama M. Kajino H. Noyori R. J. Org. Chem. 1986; 51: 2400
  • 17 Dangles O. Guibe F. Balavoine G. Lavielle S. Marquet A. J. Org. Chem. 1987; 52: 4984