Synlett 2016; 27(20): 2841-2845
DOI: 10.1055/s-0036-1588593
letter
© Georg Thieme Verlag Stuttgart · New York

Identification of Reactive Intermediates for the Decarbonylative Reaction of 1-Alkylprolines

Yu-Chiao Shih
Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
,
Jing-Shiuan Wang
Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
,
Chia-Chun Hsu
Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
,
Pei-Hua Tsai
Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
,
Tun-Cheng Chien*
Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan   Email: tcchien@ntnu.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 13 June 2016

Accepted after revision: 23 August 2016

Publication Date:
19 September 2016 (online)


Abstract

1-Alkylprolines undergo decarbonylative reactions with oxalyl chloride and subsequent Mannich reactions with nonactivated C–H nucleophiles to give 2-substituted pyrrolidines as Mannich adducts. We showed that 1-alkyl-1-pyrrolinium compounds are the reactive intermediates formed by the decarbonylative reactions of 1-alkylprolines. Our results also confirmed that an azomethine ylide, although unreactive toward the Mannich reaction and not involved in the decarbonylative Mannich reaction, can be generated by deprotonation of the corresponding 1-alkyl-1-pyrrolinium compound under mild conditions.

Supporting Information

 
  • References and Notes

  • 2 Lochead AW, Proctor GR, Caton MP. L. J. Chem. Soc., Perkin Trans. 1 1984; 2477
  • 3 Martin SF, Barr KJ. J. Am. Chem. Soc. 1996; 118: 3299
  • 5 Chu L, Ohta C, Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
  • 7 Zhang C, Seidel D. J. Am. Chem. Soc. 2010; 132: 1798
  • 8 Chen W, Wilde RG, Seidel D. Org. Lett. 2014; 16: 730
  • 9 Shih Y.-C, Tsai P.-H, Hsu C.-C, Chang C.-W, Jhong Y, Chen Y.-C, Chien T.-C. J. Org. Chem. 2015; 80: 6669

    • 1-(Benzyl-d 7)proline (1a-d 7) was prepared from benzyl-d 7 bromide and proline by the same procedure as the unlabeled compound; see:
    • 10a Cardillo G, Gentilucci L, Tolomelli A, Qasem AR, Spampinato S, Calienni M. Org. Biomol. Chem. 2003; 1: 3010
    • 10b Belokon YN, Tararov VI, Maleev VI, Savel’eva TF, Ryzhov MG. Tetrahedron: Asymmetry 1998; 9: 4249
  • 11 Dean RT, Padgett HC, Rapoport H. J. Am. Chem. Soc. 1976; 98: 7448
  • 12 The deuterated Mannich adducts were prepared from 1-(benzyl-d 7)proline (1a-d 7) and a carbon nucleophile (pyrrole, indole, or acetophenone, 9ac) by the same procedure as for the unlabeled compounds, previously reported by our group.
  • 13 2-[1-(Benzyl-d 7)pyrrolidin-2-yl]-1-phenylethanone (2aa-d 7) Prepared from 1-(benzyl-d 7)proline (1a-d 7) and acetophenone (9a) by the procedure previously reported. The product was purified by flash column chromatography [silica gel, hexane–EtOAc (8.5:1.5)] to give an oil; yield: 0.1349 g (0.471 mmol, 42%); Rf = 0.14 (hexane–EtOAc, 8:2); 1H NMR (400 MHz, CDCl3): δ = 7.94–7.92 (m, 2 H), 7.55 (t, J = 7.3 Hz, 1 H), 7.45 (t, J = 7.6 Hz, 2 H), 3.33 (dd, J = 3.6, 15.9 Hz, 1 H), 3.16–3.09 (m, 1 H), 3.02 (dd, J = 8.9, 15.8 Hz, 1 H), 2.99–2.93 (m, 1 H), 2.25 (dd, J = 9.0, 17.4 Hz, 1 H), 2.20–2.11 (m, 1 H), 1.80–1.69 (m, 2 H), 1.58–1.50 (m, 1 H); 13C NMR (100 MHz, CDCl3): δ = 199.6, 139.0, 137.2, 132.9 (CH), 128.5 (CH), 128.4 (t, J C–D = 96 Hz), 128.0 (CH), 127.7 (t, J C–D = 96 Hz), 126.4 (t, J C–D = 96 Hz), 60.5 (CH), 58.1 (quint, J C–D = 80 Hz), 53.9 (CH2), 44.1 (CH2), 31.3 (CH2), 22.3 (CH2); MS (EI): m/z (%) = 97 (52), 168 (100), 188 (42), 286 (6) [M+]; HRMS (EI, magnetic sector): m/z [M+] calcd for C19H14D7NO: 286.2063; found: 286.2060
  • 14 3-[(1-Benzyl-d 7)pyrrolidin-2-yl]-1H-indole (2ab-d 7) Prepared from 1-(benzyl-d 7)proline (1a-d 7) and indole (9b) by the procedure previously reported. The product was purified by flash column chromatography [silica gel, hexane–EtOAc (7.75:2.25)] to give an oil; yield: 0.0888 g (0.313 mmol, 63%); Rf = 0.15 (hexane–EtOAc, 7:3); 1H NMR (400 MHz, CDCl3): δ = 8.08 (br s, 1 H, NH), 7.92 (d, J = 7.9 Hz, 1 H), 7.38 (d, J = 8.0 Hz, 1 H), 7.24–7.15 (m, 3 H), 3.71 (t, J = 8.3 Hz, 1 H), 3.15–3.11 (m, 1 H), 2.30–2.20 (m, 2 H), 2.12–1.92 (m, 2 H), 1.89–1.80 (m, 1 H); 13C NMR (125 MHz, CDCl3): δ = 139.7, 136.8, 128.4 (t, J C–D = 95 Hz), 127.5 (t, J C–D = 95 Hz), 126.7, 126.0 (t, J C–D = 95 Hz), 122.0 (CH), 121.9 (CH), 120.1 (CH), 119.1 (CH), 118.1, 111.1 (CH), 62.2 (CH), 57.4, 53.4 (CH2), 33.0 (CH2), 22.2 (CH2); MS (EI): m/z (%) = 98 (21), 157 (27), 283 (100) [M+]; HRMS (EI, magnetic sector): m/z calcd for C19H13D7N2: 283.2066; found: 283.2066
  • 15 2-[(1-Benzyl-d 7)pyrrolidin-2-yl]-1H-pyrrole (2ac-d 7) Prepared from 1-(benzyl-d 7)proline (1a-d 7) and pyrrole (9c) by the procedure previously reported. The product was purified by flash column chromatography [silica gel, CH2Cl2–Et2O (9:1)] to an oil; yield: 0.0581 g (0.2490 mmol, 50%), Rf = 0.13 (hexane–EtOAc, 9:1); 1H NMR (500 MHz, CDCl3): δ = 8.62 (br s, 1 H, NH), 6.77 (s, 1 H), 6.17–6.16 (m, 1 H), 6.13 (s, 1 H), 3.58 (t, J = 7.7 Hz, 1 H), 3.06 (t, J = 8.3 Hz, 1 H), 2.24 (dd, J = 8.6, 17.3 Hz, 1 H), 2.17–2.11 (m, 1 H), 1.89–1.77 (m, 3 H); 13C NMR (125 MHz, CDCl3): δ = 138.9, 133.0, 128.3 (t, J C–D = 95 Hz), 127.6 (t, J C–D = 95 Hz), 126.3 (t, J C–D = 95 Hz), 117.0 (CH), 107.9 (CH), 106.5 (CH), 62.5 (CH), 57.3 (quint, J C–D = 81 Hz), 52.9 (CH2), 33.1 (CH2), 22.2 (CH2); MS (EI): m/z (%) = 98 (77), 107 (54), 149 (86), 167 (38), 233 (100) [M+]; HRMS (EI, magnetic sector): m/z [M+] calcd for C15H11D7N2: 233.1909; found: 233.1909