Synthesis 2017; 49(02): 429-439
DOI: 10.1055/s-0036-1588612
paper
© Georg Thieme Verlag Stuttgart · New York

Bifunctional Thiourea-Catalyzed Stereoablative Retro-Sulfa-Michael Reaction: Concise and Diastereoselective Access to Chiral 2,4-Diarylthietanes

András Bacsó
Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2A, 1117 Budapest, Hungary   Email: soos.tibor@ttk.mta.hu
,
Mariann Szigeti
Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2A, 1117 Budapest, Hungary   Email: soos.tibor@ttk.mta.hu
,
Szilárd Varga
Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2A, 1117 Budapest, Hungary   Email: soos.tibor@ttk.mta.hu
,
Tibor Soós*
Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2A, 1117 Budapest, Hungary   Email: soos.tibor@ttk.mta.hu
› Author Affiliations
Further Information

Publication History

Received: 06 September 2016

Accepted: 09 September 2016

Publication Date:
14 October 2016 (online)


Dedicated to Professor Dieter Enders on the occasion of his 70th birthday

Abstract

Owing to the chiral recognition capacity of bifunctional thioureas, a stereoablative retro-sulfa-Michael reaction has been developed. Utilization of a biphasic system enabled us to render the process catalytic. The usefulness of this methodology was further illustrated by the diastereoselective synthesis of all possible stereoisomers of 2,4-di­arylthiethanes.

Supporting Information

 
  • References

    • 1a Asymmetric Organocatalysis . 1st ed.; Berkessel A, Gröger H. Wiley-VCH; Weinheim: 2005
    • 1b Science of Synthesis: Asymmetric Organocatalysis . 1st ed.; List B, Maruoka K. Thieme; Stuttgart: 2012
    • 1c Comprehensive Enantioselective Organocatalysis . 1st ed.; Dalko PI. Wiley-VCH; Weinheim: 2013
    • 1d Stereoselective Organocatalysis . 1st ed.; Rios Torres R. Wiley-VCH; Weinheim: 2013
    • 1e Hydrogen Bonding in Organic Synthesis . Pihko P. Wiley-VCH; Weinheim: 2009
    • 2a Hiemstra H, Wynberg H. J. Am. Chem. Soc. 1981; 103: 417
    • 2b Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
    • 2c Hamza A, Schubert G, Soós T, Pápai I. J. Am. Chem. Soc. 2006; 128: 13151
    • 2d Kótai B, Kardos G, Hamza A, Farkas V, Pápai I, Soós T. Chem. Eur. J. 2014; 20: 5631

      For an excellent review about bifunctional organocatalyst, see ref. 1a. Selected examples using bifunctional thiourea based cinchona organocatalyts:
    • 3a Li B.-J, Jiang L, Liu M, Chen Y.-C, Ding L.-S, Wu Y. Synlett 2005; 603
    • 3b Vakulya B, Varga Sz, Csámpai A, Soós T. Org. Lett. 2005; 7: 1967
    • 3c Ye J, Dixon DJ, Peter S, Hynes PS. Chem. Commun. 2005; 4481
    • 3d McCooey SH, Connon SJ. Angew. Chem. Int. Ed. 2005; 44: 6370
    • 3e Vakulya B, Varga Sz, Soós T. J. Org. Chem. 2008; 73: 3475
  • 4 The word stereoablation was coined by Stoltz (ref. 5a): ‘a chemical process where an existing stereogenic element in a molecule is eliminated’.

    • Selected references on stereoablative processes:
    • 5a Mohr JT, Behenna DC, Harned AM, Stoltz BM. Angew. Chem. Int. Ed. 2005; 44: 6924
    • 5b Mohr JT, Ebner DC, Stoltz BM. Org. Biomol. Chem. 2007; 5: 3571
    • 5c Enders D, Narine AA, Toulgoat F, Bisschops T. Angew. Chem. Int. Ed. 2008; 47: 5661
    • 5d Wilcke D, Herdtweck E, Bach T. Synlett 2011; 1235
    • 5e Terada M, Yamanaka T, Toda Y. Chem. Eur. J. 2013; 19: 13658
    • 5f Al-Hunaiti A, Räisänen M, Pihko P, Leskelä M, Repo T. Eur. J. Org. Chem. 2014; 6141
    • 5g Murakami K, Sasano Y, Tomizawa M, Shibuya M, Kwon E, Iwabuchi Y. J. Am. Chem. Soc. 2014; 136: 17591
    • 5h Li L, Liu Y, Peng Y, Yu L, Wu X, Yan H. Angew. Chem. Int. Ed. 2016; 55: 331

      Selected examples using organocatalysis in kinetic resolutions:
    • 6a Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2008; 47: 248
    • 6b Xie J.-W, Fan L.-P, Su H, Li X.-S, Xu D.-C. Org. Biomol. Chem. 2010; 8: 2117
    • 6c Iwahana S, Iida H, Yashima E. Chem. Eur. J. 2011; 17: 8009
    • 6d Dong S, Liu X, Zhu Y, He P, Lin L, Feng X. J. Am. Chem. Soc. 2013; 135: 10026
    • 6e Harada S, Kuwano S, Yamaoka Y, Yamada Ki, Takasu K. Angew. Chem. Int. Ed. 2013; 52: 10227
    • 6f Renzi P, Kronig C, Carlone A, Eröksüz S, Berkessel A, Bella M. Chem. Eur. J. 2014; 20: 11768
    • 6g Roux C, Candy M, Pons JM, Chuzel O, Bressy C. Angew. Chem. Int. Ed. 2014; 53: 766
    • 6h Monaco MR, Poladura B, Diaz de Los Bernardos M, Leutzsch M, Goddard R, List B. Angew. Chem. Int. Ed. 2014; 53: 7063
    • 6i Ma G, Deng J, Sibi MP. Angew. Chem. Int. Ed. 2014; 53: 11818
    • 7a Varga Sz, Jakab G, Drahos L, Holczbauer T, Czugler M, Soós T. Org. Lett. 2011; 13: 5416
    • 7b Varga Sz, Jakab G, Csámpai A, Soós T. J. Org. Chem. 2015; 80: 8990
  • 8 Varga E, Mika LT, Csámpai A, Holczbauer T, Kardos Gy, Soós T. RSC Adv. 2015; 5: 95079
    • 9a Ueno Y, Yadav LD. S, Okawara M. Synthesis 1981; 547
    • 9b Maciągiewicz I, Dybowski P, Skowrońska A. Tetrahedron 2003; 59: 6057
    • 9c Han X, Zhang Y, Wu J. J. Am. Chem. Soc. 2010; 132: 4104
    • 9d Shapiro ND, Rauniyar V, Hamilton GL, Wu J, Toste FD. Nature 2011; 470: 245
    • 9e Robertson FJ, Wu J. J. Am. Chem. Soc. 2012; 134: 2775
  • 10 Santschi N, Togni A. J. Org. Chem. 2011; 76: 4189
  • 12 For details, see Supporting Information.
  • 13 S = ln[(1 – c)(1 – ee)]/ln[(1 – c)(1 + ee)], where c = conv./100 and ee = ee/100.

    • Reviews on CBS reduction:
    • 14a Singh VK. Synthesis 1992; 605
    • 14b Corey EJ, Helal CJ. Angew. Chem. Int. Ed. 1998; 37: 1986

    • Details of the used method:
    • 14c Dalicsek Z, Pollreisz F, Soós T. Chem. Commun. 2009; 4587