Synthesis 2017; 49(02): 409-423
DOI: 10.1055/s-0036-1588636
paper
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Isothiourea-Catalysed Michael–Michael–Lactonisation­ Cascade Reaction for the Synthesis of δ-Lactones and 1,2,3,4-Substituted Cyclopentanes

Emily R. T. Robinson
EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK   Email: ads10@st-andrews.ac.uk
,
Aileen B. Frost
EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK   Email: ads10@st-andrews.ac.uk
,
Pilar Elías-Rodríguez
EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK   Email: ads10@st-andrews.ac.uk
,
Andrew D. Smith*
EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK   Email: ads10@st-andrews.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 02 August 2016

Accepted after revision: 05 October 2016

Publication Date:
23 November 2016 (online)


Dedicated to Professor Dieter Enders on the occasion of his 70th birthday

Abstract

This manuscript describes the application of α,β-unsaturated acyl ammonium intermediates in a Michael–Michael–lactonisation cascade process to furnish δ-lactones. Generation of α,β-unsaturated acyl ammonium intermediates was achieved upon addition of isothiourea catalyst HyperBTM into α,β-unsaturated acid chlorides. Subsequent reaction with enone-malonates gave access to δ-lactones in 20–64% yield, 72.5:27.5 to 95:5 er and 81:19 to >95:5 dr. Additionally, application of a ring-opening protocol yielded 1,2,3,4-substituted cyclopentanes in 28–77% yield, 76:24 to 98:2 er and 86:14 to >95:5 dr. Interestingly, the highest er was observed at high reaction temperatures, with 70 °C proving optimal. This effect was investigated by conducting an Eyring analysis, which indicated that differential activation entropy rather than differential activation enthalpy is responsible for enantiodiscrimination in this process.

Supporting Information

 
  • References

  • 1 Nicolaou KC, Montagnon T, Snyder SA. Chem. Commun. 2003; 551
  • 2 Nicolaou KC, Chen JS. Chem. Soc. Rev. 2009; 38: 2993
  • 3 Dewick PM. Medicinal Natural Products: A Biosynthetic Approach . 3rd ed. John Wiley & Sons Ltd; Chichester: 2009
  • 4 Jones SB, Simmons B, Mastracchio A, MacMillan DW. Nature 2011; 475: 183
    • 5a Song A, Wang W. Catalytic Cascade Reactions . Xu P.-F, Wang W. John Wiley & Sons Inc; Hoboken: 2014. Chap. 1, 1-52
    • 5b Enders D, Hüttl MR. M, Grondl C, Raabe G. Nature 2006; 441: 861
    • 6a Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
    • 6b Shu T, Ni Q, Song X, Zhao K, Wu T, Puttreddy R, Rissanen K, Enders D. Chem. Commun. 2016; 52: 2609
  • 7 Biswas A, De Sarkar S, Fröhlich R, Studer A. Org. Lett. 2011; 13: 4966
  • 8 Liu G, Shirley ME, Van KN, McFarlin RL, Romo D. Nature Chem. 2013; 5: 1049
  • 9 Candish L, Lupton DW. J. Am. Chem. Soc. 2013; 135: 58
  • 10 Bera S, Samanta RC, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2014; 53: 9622

    • For pioneering reports on isothiourea catalysis, see:
    • 11a Birman VB, Li X. Org. Lett. 2006; 8: 1351
    • 11b Birman VB, Jiang H, Li X, Guo L, Uffman EW. J. Am. Chem. Soc. 2006; 128: 6536
    • 11c Kobayashi M, Okamoto S. Tetrahedron Lett. 2006; 47: 4347
    • 11d Joannesse C, Johnston CP, Concellón C, Simal C, Philp D, Smith AD. Angew. Chem. Int. Ed. 2009; 48: 8914

    • For recent reviews, see:
    • 11e Morrill LC, Smith AD. Chem. Soc. Rev. 2014; 43: 6214
    • 11f Taylor JE, Bull SD, Williams JM. J. Chem. Soc. Rev. 2012; 41: 2109
    • 11g Merad J, Pons J.-M, Chuzel O, Bressy C. Eur. J. Org. Chem. 2016; in press; DOI: 10.1002/ejoc.201600399
    • 12a Simal C, Lebl T, Slawin AM. Z, Smith AD. Angew. Chem. Int. Ed. 2012; 51: 3653
    • 12b Morrill LC, Douglas J, Lebl T, Slawin AM. Z, Fox DJ, Smith AD. Chem. Sci. 2013; 4: 4146
    • 12c Stark DG, Morrill LC, Yeh P.-P, Slawin AM. Z, O’Riordan TJ. C, Smith AD. Angew. Chem. Int. Ed. 2013; 52: 11642
    • 12d Yeh P.-P, Daniels DS. B, Fallan C, Gould E, Simal C, Taylor JE, Slawin AM. Z, Smith AD. Org. Biomol. Chem. 2015; 13: 2177
    • 13a Robinson ER. T, Fallan C, Simal C, Slawin AM. Z, Smith AD. Chem. Sci. 2013; 4: 2193
    • 13b Robinson ER. T, Walden DM, Fallan C, Greenhalgh M, Cheong PH.-Y, Smith AD. Chem. Sci. 2016; in press; DOI: 10.1039/C6SC00940A

    • For other related work, see:
    • 13c Bappert E, Müller P, Fu GC. Chem. Commun. 2006; 2604
    • 13d Vellalath S, Van KN, Romo D. Angew. Chem. Int. Ed. 2013; 52: 13688
    • 13e Liu G, Shirley ME, Van KN, McFarlin RL, Romo D. Nature Chem. 2013; 5: 1049
    • 13f Fukata Y, Asano K, Matsubara S. J. Am. Chem. Soc. 2015; 137: 5320
  • 14 Liang Z.-Q, Wang D.-L, Zhang H.-M, Ye S. Org. Lett. 2015; 17: 5140
  • 15 Bera S, Daniliuc CG, Studer A. Org. Lett. 2015; 17: 4940
  • 16 Fu Z, Wu X, Chi YR. Org. Chem. Front. 2016; 3: 145
  • 17 See the Supporting Information for further details regarding reaction optimisation and base screening.
  • 18 Eyring H. J. Chem. Phys. 1935; 3: 107
    • 19a Cainelli G, Galletti P, Giacomini D, Orioli P. Tetrahedron Lett. 2001; 42: 7383
    • 19b Cainelli G, Galletti P, Giacomini D. Chem. Soc. Rev. 2009; 38: 990
  • 20 Otera J, Sakamoto K, Tsukamoto T, Orita A. Tetrahedron Lett. 1998; 39: 3201
  • 21 Buschmann H, Scharf H.-D, Hoffmann N, Esser P. Angew. Chem., Int. Ed. Engl. 1991; 30: 477
  • 22 Sohtome Y, Shin B, Horitsugi N, Noguchi K, Nagasawa K. Chem. Asian J. 2011; 6: 2463
  • 23 Saito R, Naruse S, Takano K, Fukuda K, Katoh A, Inoue Y. Org. Lett. 2006; 8: 2067
  • 24 The absolute and relative configurations of the minor diastereoisomer could not be confidently assigned. Resubjection of 2g to the reaction conditions returned the lactone without erosion of diastereoselectivity, suggesting that base-mediated epimerisation was not the cause of the formation of the minor diastereoisomer.

    • For the initial postulate of 1,5-S···O interactions as a control element in isothiourea catalysis see:
    • 25a Birman VB, Li X, Han Z. Org. Lett. 2007; 9: 37-40

    • For other manuscripts of interest see:
    • 25b Abbasov ME, Hudson BM, Tantillo DJ, Romo D. J. Am. Chem. Soc. 2014; 136: 4492
    • 25c Liu P, Yang X, Birman VB, Houk KN. Org. Lett. 2012; 14: 3288 ; Romo and Tantillo (ref 25b) have probed the nature of 1,5-S···O interactions of α,β-unsaturated acyl ammonium species with NBO and postulate this interaction is due to a number of orbital interactions. In particular, unfavourable nS  σ*C–HC–H interactions disfavour alternative conformations with an O-C-N-C dihedral angle of 180°

      See the following publications for a selection of discussions on the origin of this interaction:
    • 26a Zhang X, Gong Z, Li J, Lu T. J. Chem. Inf. Model. 2015; 55: 2138
    • 26b Ángyán JG, Kucsman Á, Poirier RA, Csizmadia IG. J. Mol. Struct. (Theochem) 1985; 123: 189
    • 26c Murray JS, Lane P, Politzer P. Int. J. Quantum Chem. 2008; 108: 2770
    • 26d Iwaoka M, Takemoto S, Tomoda S. J. Am. Chem. Soc. 2002; 124: 10613
    • 26e Brameld KA, Kuhn B, Reuter DC, Stahl M. J. Chem. Inf. Model. 2008; 48: 1
  • 27 Han X, Widenhoefer RA. J. Org. Chem. 2004; 69: 1738
  • 28 Poulhès F, Sylvain R, Perfetti P, Bertrand MP, Gil G, Gastaldi S. Synthesis 2010; 1334
  • 29 Phosphoranes were prepared according to a procedure detailed within the following: Stark DG, Morrill LC, Yeh P.-P, Slawin AM. Z, O’Riordan TJ. C, Smith AD. Angew. Chem. Int. Ed. 2013; 52: 11642