Synlett 2017; 28(08): 976-980
DOI: 10.1055/s-0036-1588690
letter
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Allyl-, and Allenylboration of Aldehydes Catalyzed by Chiral Hydroxyl Carboxylic Acid

Yuya Ota
School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan   Email: hamashima@u-shizuoka-ken.ac.jp
,
Yuji Kawato
School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan   Email: hamashima@u-shizuoka-ken.ac.jp
,
Hiromichi Egami
School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan   Email: hamashima@u-shizuoka-ken.ac.jp
,
Yoshitaka Hamashima*
School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan   Email: hamashima@u-shizuoka-ken.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 17 November 2016

Accepted after revision: 19 December 2016

Publication Date:
08 February 2017 (online)


Abstract

Asymmetric allylboration of aldehydes with allylboronic acid pinacol ester catalyzed by chiral hydroxyl carboxylic acid is described. This reaction provides synthetically useful homoallyl alcohols in high yield with good to high enantioselectivity. The present catalytic protocol was also examined in asymmetric allenylboration of aldehydes at elevated temperature to afford chiral homopropargyl alcohols with reasonable asymmetric induction.

Supporting Information

 
  • References and Notes

    • 1a Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
    • 1b Rueping M, Parmar D, Sugiono E In Asymmetric Brønsted Acid Catalysis . Wiley-VCH; Weinheim: 2016
    • 2a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 2b Uraguchi D, Sorimachi K, Terada M. J. Am. Chem. Soc. 2004; 126: 5356

      For recent reviews of chiral phosphoric acid catalysis, see:
    • 3a Akiyama T, Itoh J, Fuchibe K. Adv. Synth. Catal. 2006; 348: 999
    • 3b Connon SJ. Angew. Chem. Int. Ed. 2006; 45: 3909
    • 3c Akiyama T. Chem. Rev. 2007; 107: 5744
    • 3d Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 3e Terada M. Chem. Commun. 2008; 4097
    • 3f Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 4a Hashimoto T, Maruoka K. J. Am. Chem. Soc. 2007; 129: 10054
    • 4b Hashimoto T, Hirose M, Maruoka K. J. Am. Chem. Soc. 2008; 130: 7556
    • 4c Hashimoto T, Uchiyama N, Maruoka K. J. Am. Chem. Soc. 2008; 130: 14380
    • 4d Hashimoto T, Kimura H, Nakatsu H, Maruoka K. J. Org. Chem. 2011; 76: 6030
    • 4e Hashimoto T, Omote M, Maruoka K. Angew. Chem. Int. Ed. 2011; 50: 3489
    • 4f Hashimoto T, Omote M, Maruoka K. Angew. Chem. Int. Ed. 2011; 50: 8952
    • 4g Hashimoto T, Kimura H, Kawamata Y, Maruoka K. Nat. Chem. 2011; 3: 642
    • 4h Hashimoto T, Kimura H, Kawamata Y, Maruoka K. Angew. Chem. Int. Ed. 2012; 51: 7279
    • 4i Hashimoto T, Isobe S, Callens CK. A, Maruoka K. Tetrahedron 2012; 68: 7630
  • 5 Egami H, Sato K, Asada J, Kawato Y, Hamashima Y. Tetrahedron 2015; 71: 6384
  • 6 Egami H, Asada J, Sato K, Hashizume D, Kawato Y, Hamashima Y. J. Am. Chem. Soc. 2015; 137: 10132

    • For recent reviews on asymmetric allylation reaction, see:
    • 7a Chemler SR, Roush WR In Modern Carbonyl Chemistry . Wiley-VCH; Weinheim: 2000: 403-490
    • 7b Denmark SE, Fu J. Chem. Rev. 2003; 103: 2763
    • 7c Kennedy JW. J, Hall DG In Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine . Wiley-VCH; Weinheim: 2005. Chap. 6, 241
    • 7d Hall DG. Synlett 2007; 1644
    • 7e Lachance H, Hall DG. Org. React. 2008; 73: 1
    • 7f Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
    • 7g Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2013; 113: 5595
    • 7h Huo H.-X, Duvall JR, Huanga M.-Y, Hong R. Org. Chem. Front. 2014; 1: 303

      For selected examples for metal complex catalyzed allylboration, see: Cu:
    • 8a Wada R, Oisaki K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2004; 126: 8910
    • 8b Shi S.-L, Xu L.-W, Oisaki K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 6638

    • For Zn, see:
    • 8c Kobayashi S, Endo T, Ueno M. Angew. Chem. Int. Ed. 2011; 50: 12262
    • 8d Cui Y, Yamashita Y, Kobayashi S. Chem. Commun. 2012; 48: 10319
    • 8e Cui Y, Wei L, Sato T, Yamashita Y, Kobayashi S. Adv. Synth. Catal. 2013; 355: 1193

    • For Ni, see:
    • 8f Zang P, Morken JP. J. Am. Chem. Soc. 2009; 131: 12550

    • For In, see:
    • 8g Schneider U, Ueno M, Kobayashi S. J. Am. Chem. Soc. 2008; 130: 13824

    • For Sn, see:
    • 8h Rauniyar V, Hall DG. Angew. Chem. Int. Ed. 2006; 45: 2426
    • 8i Rauniyar V, Zhai H, Hall DG. J. Am. Chem. Soc. 2008; 130: 8481
    • 8j Bhakta U, Sullivan E, Hall DG. Tetrahedron 2014; 70: 678

      For reviews of asymmetric organocatalysis, see:
    • 9a Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2001; 40: 3726
    • 9b Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
    • 9c Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520

      For selected examples of asymmetric allylboration through ester exchange, see:
    • 10a Lou S, Moquist PN, Schaus SE. J. Am. Chem. Soc. 2006; 128: 12660
    • 10b Barnett DS, Moquist PN, Schaus SE. Angew. Chem. Int. Ed. 2009; 48: 8679
    • 10c Zhang Y, Li N, Qu B, Ma S, Lee H, Gonnella NC, Gao J, Li W, Tan Z, Reeves JT, Wang J, Lorenz JC, Li G, Reeves DC, Premasiri A, Grinberg N, Haddad N, Lu BZ, Song JJ, Senanayake CH. Org. Lett. 2013; 15: 1710
    • 10d Silverio DL, Torker S, Pilyugina T, Vieira EM, Snapper ML, Haeffner F, Hoveyda AH. Nature 2013; 494: 216
    • 10e Lee K, Silverio DL, Torker S, Robbins DW, Haeffner F, van der Mei FW, Hoveyda AH. Nature Chem. 2016; 8: 768
    • 10f Robbins DW, Lee K, Silverio DL, Volkov A, Torker S, Hoveyda AH. Angew. Chem. Int. Ed. 2016; 55: 9610

      For selected examples of asymmetric allylboration through the activation of allyl boronates by Brønsted acid, see:
    • 11a Jain P, Antilla JC. J. Am. Chem. Soc. 2010; 132: 11884
    • 11b Xing C.-H, Liao Y.-X, Zhang Y, Sabarova D, Bassous M, Hu Q.-S. Eur. J. Org. Chem. 2012; 1115
    • 11c Wang H, Jain P, Antilla JC, Houk KN. J. Org. Chem. 2013; 78: 1208
    • 11d Incerti-Pradillos CA, Kabeshov MA, Malkov AV. Angew. Chem. Int. Ed. 2013; 52: 5338
    • 11e Barrio P, Rodriguez E, Saito K, Fustero S, Akiyama T. Chem. Commun. 2015; 51: 5246
    • 11f Rodriguez E, Grayson MN, Asensio A, Barrio P, Houk KN, Fustero S. ACS Catal. 2016; 6: 2506
    • 12a Charville H, Jackson D, Hodges G, Whiting A. Chem. Commun. 2010; 46: 1813
    • 12b Ishihara K, Ohara S, Yamamoto H. J. Org. Chem. 1996; 61: 4196
    • 12c Azuma T, Murata A, Kobayashi Y, Inokuma T, Takemoto Y. Org. Lett. 2014; 16: 4256

      Other hydrogen bonding interactions with aldehyde might be involved in the transition state, see:
    • 13a Grayson MN, Pellegrinet SC, Goodman JM. J. Am. Chem. Soc. 2012; 134: 2716
    • 13b See also refs. 7h and 11c.
  • 14 General Procedure: To a flame-dried glass tube equipped with a three-way top were placed chiral acid catalyst 2d (12.3 mg, 0.010 mmol), freshly distilled benzaldehyde (5a; 10 μL, 0.10 mmol), and anhydrous CH2Cl2 (0.5 mL) under Ar atmosphere. The resulting solution was cooled at –78 °C before allylboronic acid pinacol ester (6a; 37 μL, 0.20 mmol) was added by using a gas-tight syringe with a stainless steel needle. The reaction mixture was stirred at the same temperature for 5 h. The reaction was quenched with DIBAL-H (1.0 M in toluene, 15 μL). After stirring for 10 min, 4 M HCl was added to the mixture and the aqueous layer was extracted with CH2Cl2. The combined organic layers were washed with brine and dried over Na2SO4. After evaporation of the solvent under reduced pressure, the reaction mixture was purified by flash chromatography (EtOAc/hexanes, 1:9) to give 7a (11.0 mg, 74%) as a colorless oil; [α]D 29 –56.3 (c 0.72, CHCl3, 85% ee sample). 1H NMR (CDCl3): δ = 7.37–7.25 (m, 5 H), 5.82 (dddd, J = 17.2, 10.3, 7.5, 6.9 Hz, 1 H), 5.21–5.13 (m, 2 H), 4.75 (t, J = 6.3 Hz, 1 H), 2.57–2.47 (m, 2 H), 2.03 (br s, 1 H). 13C NMR (CDCl3): δ = 143.9, 134.4, 128.4, 127.5, 125.8, 118.4, 73.3, 43.8. CHIRALCEL OD-H (ϕ 0.46 cm × 25 cm; 2-propanol/n-hexane, 5:95; flow rate 0.5 mL/min, detection at 210 nm; tR = 14.5 (R), 16.6 (S) min.

    • For reviews on enantioselective propargylation, see:
    • 15a Marshall JA. J. Org. Chem. 2007; 72: 8153
    • 15b Ding C.-H, Hou X.-L. Chem. Rev. 2011; 111: 1914

    • For selected examples for enantioselective propargylation of carbonyl compounds, see:
    • 15c Denmark SE, Wynn T. J. Am. Chem. Soc. 2001; 123: 6199
    • 15d Evans DA, Sweeney ZK, Rovis T, Tedrow JS. J. Am. Chem. Soc. 2001; 123: 12095
    • 15e Hernandez E, Burgos CH, Alicea E, Soderquist JA. Org. Lett. 2006; 8: 4089
    • 15f Fandrick DR, Fandrick KR, Reeves JT, Tan Z, Tang W, Capacci AG, Rodriguez S, Song JJ, Lee H, Yee NK, Senanayake CH. J. Am. Chem. Soc. 2010; 132, 7600
    • 15g Barnett DS, Schaus SE. Org. Lett. 2011; 13: 4020
    • 15h Chen J, Captain B, Takenaka N. Org. Lett. 2011; 13: 1654
    • 15i Woo SK, Geary LM, Krische MJ. Angew. Chem. Int. Ed. 2012; 51: 7830
    • 15j Haddad TD, Hirayama LC, Buckley JJ, Singaram B. J. Org. Chem. 2012; 77: 889
    • 15k Hirayama LC, Haddad TD, Oliver AG, Singaram B. J. Org. Chem. 2012; 77: 4342
    • 15l Gómez-Bengoa E, García JM, Jiménez S, Lapuerta I, Mielgo A, Odriozola JM, Otaza I, Razkin J, Urruzuno I, Vera S, Oiarbide M, Palomo C. Chem. Sci. 2013; 4: 3198
    • 15m Tsai AS, Chen M, Roush WR. Org. Lett. 2013; 15: 1568
    • 15n See also refs. 8a, 11c.
    • 16a Reddy LR. Org. Lett. 2012; 14: 1142
    • 16b Jain P, Wang H, Houk KN, Antilla JC. Angew. Chem. Int. Ed. 2012; 51: 1391
    • 16c Grayson MN, Goodman JM. J. Am. Chem. Soc. 2013; 135: 6142
    • 16d See also, refs. 11c, 11f.