RSS-Feed abonnieren
DOI: 10.1055/s-0036-1588707
Recent Advances in Iminyl Radical Cyclizations
Publikationsverlauf
Received: 20. Januar 2017
Accepted: 20. Januar 2017
Publikationsdatum:
10. Februar 2017 (online)
Abstract
Iminyl radical cyclizations have emerged as important tools for constructing five- and six-membered nitrogen-containing heterocycles. Both aromatic and nonaromatic ring systems are readily accessible from a variety of radical precursors. This short review focuses on recently discovered iminyl radical cyclizations. Methods that use heat, transition metals, or oxidants to generate the radicals are discussed, as are protocols employing either UV irradiation or visible light. Many of these newly developed procedures should be quite useful to the organic synthesis community due to their utilization of mild and convenient conditions.
1 Introduction
2 Generation of Iminyl Radicals via Thermolysis, Transition Metals, or Oxidants
2.1 Formation of Five-Membered Rings
2.2 Formation of Six-Membered Rings
3 Generation of Iminyl Radicals via UV Irradiation
3.1 Formation of Five-Membered Rings
3.2 Formation of Six-Membered Rings
4 Generation of Iminyl Radicals via Visible Light Irradiation
4.1 Formation of Five-Membered Rings
4.2 Formation of Six-Membered Rings
5 Conclusion
-
References
- 1 Michael JP. Nat. Prod. Rep. 2008; 25: 139
- 2 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 3a Xiong T, Zhang Q. Chem. Soc. Rev. 2016; 45: 3069
- 3b Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
- 4a Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
- 4b Stella L In Radicals in Organic Synthesis . Vol. 2. Renaud P, Sibi MP. Wiley-VCH; Weinheim: 2001: 407
- 4c Fallis AG, Brinza IM. Tetrahedron 1997; 53: 17543
- 5 Le Tadic-Biadatti M.-H, Callier-Dublanchet A.-C, Horner JH, Quiclet-Sire B, Zard SZ, Newcomb M. J. Org. Chem. 1997; 62: 559
- 6 Forrester AR, Gill M, Sadd JS, Thomson RH. J. Chem. Soc., Perkin Trans. 1 1979; 612
- 7a Boivin J, Fouquet E, Zard SZ. Tetrahedron Lett. 1991; 32: 4299
- 7b Boivin J, Callier-Dublanchet A.-C, Quiclet-Sire B, Schiano A.-M, Zard SZ. Tetrahedron 1995; 51: 6517
- 7c Zard SZ. Synlett 1996; 1148
- 8a Uchiyama K, Hayashi Y, Narasaka K. Chem. Lett. 1998; 1261
- 8b Uchiyama K, Hayashi Y, Narasaka K. Tetrahedron 1999; 55: 8915
- 8c Kitamura M, Narasaka K. Bull. Chem. Soc. Jpn. 2008; 81: 539
- 9a Lin X, Stien D, Weinreb SM. Org. Lett. 1999; 1: 637
- 9b Lin X, Artman III GD, Stien D, Weinreb SM. Tetrahedron 2001; 57: 8779
- 11 Blake JA, Pratt DA, Lin S, Walton JC, Mulder P, Ingold KU. J. Org. Chem. 2004; 69: 3112
- 12 Walton JC. Acc. Chem. Res. 2014; 47: 1406
- 13a Portella-Cubillo F, Scott JS, Walton JC. Chem. Commun. 2007; 4041
- 13b Portella-Cubillo F, Scott JS, Walton JC. J. Org. Chem. 2008; 73: 5558
- 14 Cai Y, Jalan A, Kubosumi AR, Castle SL. Org. Lett. 2015; 17: 488
- 15 Newcomb ET, Knutson PC, Pedersen BA, Ferreira EM. J. Am. Chem. Soc. 2016; 138: 108
- 16 Sanjaya S, Chua SH, Chiba S. Synlett 2012; 23: 1657
- 17 Faulkner A, Race NJ, Scott JS, Bower JF. Chem. Sci. 2014; 5: 2416
- 18 Race NJ, Faulkner A, Shaw MH, Bower JF. Chem. Sci. 2016; 7: 1508
- 19 Du W, Zhao M.-N, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Chem. Commun. 2014; 50: 7437
- 20a Bamford AF, Cook MD, Roberts BP. Tetrahedron Lett. 1983; 24: 3779
- 20b Montevecchi PC, Navacchia ML, Spagnolo P. J. Org. Chem. 1997; 62: 5846
- 21 Wang Y.-F, Toh KK, Chiba S, Narasaka K. Org. Lett. 2008; 10: 5019
- 22 Ng EP. J, Wang Y.-F, Chiba S. Synlett 2011; 783
- 23 Bonacorso HG, Libero FM, Dal Forno GM, Pittaluga EP, Back DF, Hörner M, Martins MA. P, Zanatta N. Tetrahedron Lett. 2016; 57: 4568
- 24 Li D, Yang T, Su H, Yu W. Adv. Synth. Catal. 2015; 357: 2529
- 25a Portella-Cubillo F, Scott JS, Walton JC. Chem. Commun. 2008; 2935
- 25b Portella-Cubillo F, Scott JS, Walton JC. J. Org. Chem. 2009; 74: 4934
- 26a Wang Y.-F, Chiba S. J. Am. Chem. Soc. 2009; 131: 12570
- 26b Wang Y.-F, Toh KK, Ng EP. J, Chiba S. J. Am. Chem. Soc. 2011; 133: 6411
- 27 Wang Y.-F, Lonca GH, Runigo ML, Chiba S. Org. Lett. 2014; 16: 4272
- 28 Mackay EG, Studer A. Chem. Eur. J. 2016; 22: 13455
- 29 Yang T, Zhu H, Yu W. Org. Biomol. Chem. 2016; 14: 3376
- 30 Yang J.-C, Zhang J.-J, Guo L.-N. Org. Biomol. Chem. 2016; 14: 9806
- 31 Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
- 32a Portela-Cubillo F, Scanlan EM, Scott JS, Walton JC. Chem. Commun. 2008; 4189
- 32b Portela-Cubillo F, Lymer J, Scanlan EM, Scott JS, Walton JC. Tetrahedron 2008; 64: 11908
- 33 Portela-Cubillo F, Alonso-Ruiz R, Sampedro D, Walton JC. J. Phys. Chem. A 2009; 113: 10005
- 34 Alonso R, Campos PJ, García B, Rodríguez MA. Org. Lett. 2006; 8: 3521
- 35 Alonso R, Caballero A, Campos PJ, Rodríguez MA. Tetrahedron 2010; 66: 8828
- 36 McBurney RT, Slawin AM. Z, Smart LA, Yu Y, Walton JC. Chem. Commun. 2011; 47: 7974
- 37 McBurney RT, Walton JC. Beilstein J. Org. Chem. 2013; 9: 1083
- 38 McBurney RT, Walton JC. J. Am. Chem. Soc. 2013; 135: 7349
- 39a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 39b Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
- 40 Davies J, Booth SG, Essafi S, Dryfe RA. W, Leonori D. Angew. Chem. Int. Ed. 2015; 54: 14017
- 41 Cai S.-H, Xie J.-H, Song S, Ye L, Feng C, Loh T.-P. ACS Catal. 2016; 6: 5571
- 42 Li Z.-S, Wang W.-X, Yang J.-D, Wu Y.-W, Zhang W. Org. Lett. 2013; 15: 3820
- 43 Wang W.-X, Zhang Q.-Z, Zhang T.-Q, Li Z.-S, Zhang W, Yu W. Adv. Synth. Catal. 2015; 357: 221
- 44 Li D, Ma H, Yu W. Adv. Synth. Catal. 2015; 357: 3696
- 45 Jiang H, An X, Tong K, Zheng T, Zhang Y, Yu S. Angew. Chem. Int. Ed. 2015; 54: 4055
- 46 An X.-D, Yu S. Org. Lett. 2015; 17: 2692
- 47 Sun X, Yu S. Chem. Commun. 2016; 52: 10898
- 48 Wang Q, Huang J, Zhou L. Adv. Synth. Catal. 2015; 357: 2479
For recent reviews, see:
For earlier reviews, see:
For reviews, see: