Synthesis 2017; 49(21): 4745-4752
DOI: 10.1055/s-0036-1588735
special topic
© Georg Thieme Verlag Stuttgart · New York

Iridium-Catalyzed Site-Selective C–H Borylation of 2-Pyridones

Wataru Miura
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Email: k_hirano@chem.eng.osaka-u.ac.jp   Email: miura@chem.eng.osaka-u.ac.jp
,
Koji Hirano*
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Email: k_hirano@chem.eng.osaka-u.ac.jp   Email: miura@chem.eng.osaka-u.ac.jp
,
Masahiro Miura*
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan   Email: k_hirano@chem.eng.osaka-u.ac.jp   Email: miura@chem.eng.osaka-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 24 January 2017

Accepted after revision: 07 February 2017

Publication Date:
02 March 2017 (online)


Published as part of the Special Topic Modern Strategies for Borylation in Synthesis

Abstract

An iridium-catalyzed site-selective C–H borylation of 2-pyridones has been developed. The site selectivity is predominantly controlled by steric factors, and we can access C4, C5, and C6 C–H on the 2-pyridone ring by the judicious choice of ligand and solvent. Subsequent Suzuki–Miyaura cross-coupling of the borylated products also proceeds to form the corresponding arylated pyridones in good overall yields.

Supporting Information

 
  • References

    • 1a Torres M. Gil S. Parra M. Curr. Org. Chem. 2005; 9: 1757
    • 1b Lagoja IM. Chem. Biodiversity 2005; 2: 1
    • 1c Hibi S. Ueno K. Nagato S. Kawano K. Ito K. Norimine Y. Takenaka O. Hanada T. Yonaga M. J. Med. Chem. 2012; 55: 10584
    • 1d Hajek P. McRobbie H. Myers K. Thorax 2013; 68: 1037

      Selected reviews and accounts:
    • 2a Alberico D. Scott ME. Lautens M. Chem. Rev. 2007; 107: 174
    • 2b Satoh T. Miura M. Chem. Lett. 2007; 36: 200
    • 2c Campeau LC. Stuart DR. Fagnou K. Aldrichimica Acta 2007; 40: 35
    • 2d Seregin IV. Gevorgyan V. Chem. Soc. Rev. 2007; 36: 1173
    • 2e Park YJ. Park J.-W. Jun C.-H. Acc. Chem. Res. 2008; 41: 222
    • 2f Lewis LC. Bergman RG. Ellman JA. Acc. Chem. Res. 2008; 41: 1013
    • 2g Kakiuchi F. Kochi T. Synthesis 2008; 3013
    • 2h Daugulis O. Do H.-Q. Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 2i Chen X. Engle KM. Wang D.-H. Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 2j Ackermann L. Vicente R. Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 2k Sun C.-L. Li B.-J. Shi Z.-J. Chem. Commun. 2010; 46: 677
    • 2l Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
    • 2m Dudnik AS. Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 2096
    • 2n Satoh T. Miura M. Chem. Eur. J. 2010; 16: 11212
    • 2o Ackermann L. Chem. Commun. 2010; 46: 4866
    • 2p Liu C. Zhang H. Shi W. Lei A. Chem. Rev. 2011; 111: 1780
    • 2q Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 2r Guo X.-X. Gu D.-W. Wu Z. Zhang W. Chem. Rev. 2015; 115: 1622
    • 2s Hirano K. Miura M. Chem. Lett. 2015; 44: 868
    • 3a Tamura R. Yamada Y. Nakao Y. Hiyama T. Angew. Chem. Int. Ed. 2012; 51: 5679
    • 3b Nakatani A. Hirano K. Satoh T. Miura M. Chem. Eur. J. 2013; 19: 7691
    • 3c Nakatani A. Hirano K. Satoh T. Miura M. J. Org. Chem. 2014; 79: 1377
    • 3d Najib A. Tabuchi S. Hirano K. Miura M. Heterocycles 2016; 92: 1187
    • 3e Donets PA. Cramer N. Angew. Chem. Int. Ed. 2015; 54: 633
    • 3f Das D. Biswas A. Karmakar U. Chand S. Samanta R. J. Org. Chem. 2016; 81: 842
    • 3g Peng P. Wang J. Jiang H. Liu H. Org. Lett. 2016; 18: 5376

      See refs. 3c,d,g and:
    • 4a Chen Y. Wang F. Jia A. Li X. Chem. Sci. 2012; 3: 3231
    • 4b Odani R. Hirano K. Satoh T. Miura M. Angew. Chem. Int. Ed. 2014; 53: 10784
    • 4c Anagnostaki EA. Fotiadou AD. Demertzidou V. Zografos AL. Chem. Commun. 2014; 50: 6879
    • 4d Modak A. Rana S. Maiti D. J. Org. Chem. 2015; 80: 296
    • 4e Chauhan P. Ravi M. Singh S. Prajapati P. Yadav PP. RSC Adv. 2016; 6: 109
    • 6a Li Y. Xie F. Li X. J. Org. Chem. 2016; 81: 715
    • 6b Li T. Wang Z. Xu K. Liu W. Zhang X. Mao W. Guo Y. Ge X. Pan F. Org. Lett. 2016; 18: 1064
  • 7 Peng P. Wang J. Li C. Zhu W. Jiang H. Liu H. RSC Adv. 2016; 6: 57441
  • 8 Miura W. Hirano K. Miura M. Org. Lett. 2016; 18: 3742

    • Selected seminal works and reviews:
    • 9a Ishiyama T. Takagi J. Hartwig JF. Miyaura N. Angew. Chem. Int. Ed. 2002; 41: 3056
    • 9b Chotana GA. Rak MA. Smith III MR. J. Am. Chem. Soc. 2005; 127: 10539
    • 9c Mkhalid IA. I. Barnard JH. Marder TB. Murphy JM. Hartwig JF. Chem. Rev. 2010; 110: 890
    • 9d Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992

      To the best of our knowledge, the nondirected catalytic C–H borylation of 2-pyridones has not been reported while the reactivity and selectivity of several nitrogen-containing heterocycles has been extensively investigated; see:
    • 10a Ishiyama T. Takagi J. Yonekawa Y. Hartwig JF. Miyaura N. Adv. Synth. Catal. 2003; 345: 1103
    • 10b Ishiyama T. Nobuta Y. Hartwig JF. Miyaura N. Chem. Commun. 2003; 2924
    • 10c Mkhalid IA. I. Coventry DN. Albesa-Jove D. Batsanov AS. Howard JA. K. Perutz RN. Marder TB. Angew. Chem. Int. Ed. 2006; 45: 866
    • 10d Kallepalli VA. Shi F. Paul S. Onyeozili EN. Maleczka RE. Smith MR. J. Org. Chem. 2009; 74: 9199
    • 10e Klecka M. Pohl R. Klepetarova B. Hocek M. Org. Biomol. Chem. 2009; 7: 866
    • 10f Preshlock SM. Plattner DL. Maligres PE. Krska SW. Maleczka RE. Smith MR. Angew. Chem. Int. Ed. 2013; 52: 12915
    • 10g Larsen MA. Hartwig JF. J. Am. Chem. Soc. 2014; 136: 4287
  • 11 Although the exact reason is unclear, the use of dtbpy competitively decomposed the substrate to lower the mass balance.
  • 12 Kawamorita S. Ohmiya H. Hara K. Fukuoka A. Sawamura M. J. Am. Chem. Soc. 2009; 131: 5058
  • 13 Vanchura II BA. Preshlock SM. Roosen PC. Kallepalli VA. Staples RJ. Maleczka RE. Jr. Singleton DA. Smith III MR. Chem. Commun. 2010; 46: 7724
  • 14 Berthel S. Firooznia F. Fishlock D. Hong J.-B. Lou Y. Lucas M. Owens TD. Sarma K. Sweeney ZK. Taygerly JP. G. US 20100222325, 2010
  • 15 Miura T. Yamauchi M. Murakami M. Org. Lett. 2008; 10: 3085
  • 16 Unfortunately, in the cases of N-phenyl-2-pyridone and N-methyl-4-benzyloxy-2-pyridone, C–H borylation at the benzene ring competitively occurred to form the complicated, multiply borylated products.
  • 17 Usón R. Oro LA. Cabeza JA. Inorg. Synth. 1985; 23: 126
    • 18a Zhou H.-B. Liu G.-S. Yao Z.-J. Org. Lett. 2007; 9: 2003
    • 18b Ando M. Sato N. Nagase T. Nagai K. Ishikawa S. Takahashi H. Ohtake N. Ito J. Hirayama M. Mitobe Y. Iwaasa H. Gomori A. Matsushita H. Tadano K. Fujino N. Tanaka S. Ohe T. Ishihara A. Kanatani A. Fukami T. Bioorg. Med. Chem. 2009; 17: 6106