CC BY-ND-NC 4.0 · SynOpen 2017; 01(01): 0011-0014
DOI: 10.1055/s-0036-1588790
letter
Copyright with the author

Brønsted Acid Catalysed Aerobic Reduction of Olefins by Diimide Generated In Situ from Hydrazine

a   Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan
,
Takahiro Kohda
a   Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan
,
Keiji Minagawa
b   Institute of Liberal Arts and Sciences, Tokushima University, Minamijosanjima, Tokushima 770-8502, Japan   Email: imada@tokushima-u.ac.jp
,
a   Department of Applied Chemistry, Tokushima University, Minamijosanjima, Tokushima 770-8506, Japan
› Author Affiliations
Further Information

Publication History

Received: 02 March 2017

Accepted after revision: 23 March 2017

Publication Date:
13 April 2017 (online)


Abstract

Aerobic reduction of olefins with hydrazine was proven to be efficiently catalysed by readily available Brønsted acids, such as p-tolu­enesulfonic acid monohydrate, providing hydrogenated products in very good yields and chemoselectivity under mild conditions.

Supporting Information

 
  • References and Notes

  • 1 Hanuš J. Chem. Listy 1905; 29: 24

    • For reviews on aerobic reduction with diimide, see:
    • 2a Pasto DJ. Taylor RT. Org. React. 1991; 40: 91
    • 2b Miller CE. J. Chem. Educ. 1965; 42: 254
    • 2c Hünig S. Müller HR. Thier W. Angew. Chem., Int. Ed. Engl. 1965; 4: 271
  • 3 Chen H. Wang J. Hong X. Zhou H.-B. Dong C. Can. J. Chem. 2012; 90: 758
  • 4 Menges N. Balci M. Synlett 2014; 25: 671
  • 5 Lamani M. Guralamata RS. Prabhu KR. Chem. Commun. 2012; 48: 6583
  • 6 Leow D. Chen Y.-H. Hung T.-H. Su Y. Lin Y.-Z. Eur. J. Org. Chem. 2014; 7347
  • 7 Santra S. Guin J. Eur. J. Org. Chem. 2015; 7253
    • 8a Imada Y. Iida H. Naota T. J. Am. Chem. Soc. 2005; 127: 14544
    • 8b Imada Y. Kitagawa T. Ohno T. Iida H. Naota T. Org. Lett. 2010; 12: 32
    • 8c Imada Y. Iida H. Kitagawa T. Naota T. Chem. Eur. J. 2011; 17: 5908
    • 9a Smit C. Fraaije MW. Minnaard AJ. J. Org. Chem. 2008; 73: 9482
    • 9b Teichert JF. den Hartog T. Hanstein M. Smit C. ter Horst B. Hernandez-Olmos V. Feringa BL. Minnaard AJ. ACS Catal. 2011; 1: 309
    • 9c Marsh BJ. Heath EL. Carbery DR. Chem. Commun. 2011; 47: 280
    • 10a Pieber B. Martinez ST. Cantillo D. Kappe CO. Angew. Chem. Int. Ed. 2013; 52: 10241
    • 10b Pieber B. Cox DP. Kappe CO. Org. Process Res. Dev. 2016; 20: 376
  • 11 Kleinke AS. Jamison TF. Org. Lett. 2013; 15: 710
  • 12 Koch GK. J. Labelled Compd. Radiopharm. 1969; 5: 99

    • For pK a values of Brønsted acids, see:
    • 13a Kütt A. Leito I. Kaljurand I. Sooväli L. Vlasov VM. Yagupolskii LM. Koppel IA. J. Org. Chem. 2006; 71: 2829
    • 13b Dippy JF. J. Hughes SR. C. Rozanski A. J. Chem. Soc. 1959; 2492
    • 13c Mutai T. Abe Y. Araki K. J. Chem. Soc., Perkin Trans. 2 1997; 1805
    • 13d Izutsu K. Electrochemistry in Nonaqueous Solvents . Wiley-VCH; Weinheim: 2002. Chap. 3
    • 13e Kütt A. Rodima T. Saame E. Raamat E. Mäemets V. Kaljurand I. Koppel IA. Garlyauskayte RY. Yagupolskii YL. Yagupolskii LM. Bernhardt E. Willner H. Leito I. J. Org. Chem. 2011; 76: 391
  • 14 A mixture of a solution of the olefin (1.0 mmol) in acetonitrile (2 mL) and a 0.05 M stock solution of TsOH·H2O in acetonitrile (1 mL, 5 mol%) was stirred under an atmosphere of oxygen at 35 °C (for 1al) or 70 °C (for 1mo) for 5 min. To the resulting mixture was then added a solution of NH2NH2·H2O (60 mg, 1.2 mmol) in acetonitrile (1 mL) and the mixture was further stirred at the corresponding temperature and monitored by GC analysis. After complete consumption of the olefin, the reaction was quenched with saturated aqueous NaHCO3 (3 mL), and Et2O (15 mL) and H2O (7 mL) were added. The aqueous layer was removed and the residual organic layer was washed with H2O (2 × 10 mL) and brine (10 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to give the corresponding hydrogenated product 2ao. Data for butylbenzene (2a) [CAS Reg. No. 104-51-8]: yield: 127 mg (92%). 1H NMR (400 MHz, CDCl3, 25 °C): δ = 0.92 (t, J = 7.3 Hz, 3 H, CH3 ), 1.30–1.42 (m, 2 H, CH2 ), 1.55–1.65 (m, 2 H, CH2 ), 2.61 (t, J = 7.8 Hz, 2 H, ArCH2 ), 7.12–7.31 (m, 5 H, ArH). 13C NMR (100 MHz, CDCl3, 25 °C): δ = 13.9, 22.4, 33.7, 35.7, 125.5, 128.2, 128.4, 142.9. MS (EI): m/z (%) = 134 (26) [M], 105 (8) [C6H5CH2CH2], 91 (100) [C6H5CH2], 77 (6) [C6H5], 65 (16) [C5H5], 51 (11) [C4H3], 39 (18) [C3H3]

    • For reviews on chiral Brønsted acid catalysis, see:
    • 15a Akiyama T. Mori K. Chem. Rev. 2015; 115: 9277
    • 15b Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014; 114: 9047
    • 15c Akiyama T. Chem. Rev. 2007; 107: 5744