Synthesis 2017; 49(18): 4183-4190
DOI: 10.1055/s-0036-1588821
special topic
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Intramolecular C–H Amination: A New Entry to Substituted Xanthine Derivatives

Maki Shimizu
School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan   Email: inamoto@mukogawa-u.ac.jp
,
Noboru Hayama
School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan   Email: inamoto@mukogawa-u.ac.jp
,
Tetsutaro Kimachi
School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan   Email: inamoto@mukogawa-u.ac.jp
,
Kiyofumi Inamoto*
School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, 11-68, 9-Bancho, Koshien, Nishinomiya, Hyogo 663-8179, Japan   Email: inamoto@mukogawa-u.ac.jp
› Author Affiliations
We gratefully acknowledge financial support by a Grant-in-Aid for Scientific Research (C) (No. 16K08187) from the Japan Society for the Promotion of Science.
Further Information

Publication History

Received: 19 March 2017

Accepted after revision: 10 April 2017

Publication Date:
09 May 2017 (online)


Published as part of the Special Topic Modern Cyclization Strategies in Synthesis

Abstract

Catalytic synthesis of xanthines was achieved in the presence of a copper catalyst. The process involves copper-catalyzed intramolecular C–H amination of benzamidines that possess a uracil moiety and produces variously substituted xanthines generally in good to high yields. This work introduces a new, facile approach to polysubstituted xanthine compounds.

Supporting Information

 
  • References

    • 1a Daly JW. J. Med. Chem. 1982; 25: 197
    • 1b Stevanovich V. Drug News Perspect 1989; 2: 82
    • 1c Jacobson KA. van Galen PJ. M. Williams M. J. Med. Chem. 1992; 35: 407

      For selected recent examples, see:
    • 2a Strappaghetti G. Corsano S. Barbaro R. Giannaccini G. Betti L. Bioorg. Med. Chem. 2001; 9: 575
    • 2b Hayallah AM. Sandoval-Ramírez J. Reith U. Schobert U. Preiss B. Schumacher B. Daly JW. Müller CE. J. Med. Chem. 2002; 45: 1500
    • 2c Wang Y. Chackalamannil S. Hu Z. Boyle CD. Lankin CM. Xia Y. Xu R. Asberom T. Pissarnitski D. Stamford AW. Greenlee WJ. Skell J. Kurowski S. Vemulapalli S. Palamanda J. Chintala M. Wu P. Myers J. Wang P. Bioorg. Med. Chem. Lett. 2002; 12: 3149
    • 2d Suzuki H. Yamamoto M. Shimura S. Miyamoto K. Yamamoto K. Sawanishi H. Chem. Pharm. Bull. 2002; 50: 1163
    • 2e Baraldi PG. Tabrizi MA. Preti D. Bovero A. Romagnoli R. Fruttarolo F. Zaid NA. Moorman AR. Varani K. Gessi S. Merighi S. Borea PA. J. Med. Chem. 2004; 47: 1434
    • 2f Zablocki J. Kalla R. Perry T. Palle V. Varkhedkar V. Xiao D. Piscopio A. Maa T. Gimbel A. Hao J. Chu N. Leung K. Zeng D. Bioorg. Med. Chem. Lett. 2005; 15: 609
    • 2g Kalla RV. Elzein E. Perry T. Li X. Palle V. Varkhedkar V. Gimble A. Maa T. Zeng D. Zablocki J. J. Med. Chem. 2006; 49: 3682
    • 2h Yadav R. Bansal R. Kachler S. Klotz KN. Eur. J. Med. Chem. 2014; 75: 327
    • 3a Traube W. Ber. Dtsch. Chem. Ges. 1900; 33: 3035
    • 3b Lister JH. The Purines, Supplement 1 . In The Chemistry of Heterocyclic Compounds . Vol. 54. Taylor EC. Weissberger A. Wiley; New York: 1996
    • 5a Bridson PK. Wang X. Synthesis 1995; 855
    • 5b Herr RJ. Vogt PF. Meckler H. Trova MP. J. Org. Chem. 2002; 67: 188
    • 5c Hergueta AR. Figueira MJ. López C. Caamaño O. Fernández F. Rodríguez-Borges JE. Chem. Pharm. Bull. 2002; 50: 1379
    • 5d Zavialov IA. Dahanukar VH. Nguyen H. Orr C. Andrews DR. Org. Lett. 2004; 6: 2237
    • 5e He R. Lam Y. J. Comb. Chem. 2005; 7: 916
    • 5f He R. Ching SM. Lam Y. J. Comb. Chem. 2006; 8: 923
    • 5g LaBeaume P. Dong M. Sitkovsky M. Jones EV. Thomas R. Sadler S. Kallmerten AE. Jones GB. Org. Biomol. Chem. 2010; 8: 4155
  • 6 There is one report that involves copper-catalyzed intramolecular C–Br amination for the synthesis of several heterocycles including xanthines. However, only few examples were shown and it is unknown whether the approach is general and applicable for the xanthine synthesis: Szczepankiewicz BG. Rohde JJ. Kurukulasuriya R. Org. Lett. 2005; 7: 1833

    • For reviews on Cu-catalyzed C–H amination, see:
    • 7a Subramanian P. Rudolf GC. Kaliappan KP. Chem. Asian J. 2016; 11: 168
    • 7b Guo X.-X. Gu D.-W. Wu Z. Zhang W. Chem. Rev. 2015; 115: 1622
    • 7c Zhang Q. Chen K. Shi B.-F. Synlett 2014; 25: 1941
    • 7d Gephart RT. III. Warren TH. Organometallics 2012; 31: 7728
    • 7e Armstrong A. Collins JC. Angew. Chem. Int. Ed. 2010; 49: 2282
  • 8 During the course of preparation of this manuscript, similar xanthine synthesis based on intramolecular copper-catalyzed C–H amination was reported, see: Morel B. Franck P. Bidange J. Sergeyev S. Smith DA. Moseley JD. Maes BU. W. ChemSusChem 2017; 10: 467
    • 9a Inamoto K. Saito T. Katsuno M. Sakamoto T. Hiroya K. Org. Lett. 2007; 9: 2931
    • 9b Inamoto K. Saito T. Hiroya K. Doi T. Synlett 2008; 3157
    • 9c Inamoto K. Saito T. Hiroya K. Doi T. J. Org. Chem. 2010; 75: 3900
    • 9d Inamoto K. Kawasaki J. Hiroya K. Kondo Y. Doi T. Chem. Commun. 2012; 48: 4332
    • 9e Inamoto K. Chem. Pharm. Bull. 2013; 61: 987
  • 10 For a metal-free C–H amination utilizing hypervalent iodine(III) reagents such as PhI(OAc)2, see: Manna S. Serebrennikova PO. Utepova IA. Antonchick AP. Org. Lett. 2015; 17: 4588 and references cited therein
  • 11 Unfortunately, the precise reaction mechanism of the process is unclear at present. For some reaction mechanisms of Cu-catalyzed C–H functionalization, see refs. 7a and 7b.