Subscribe to RSS
DOI: 10.1055/s-0036-1588859
Investigations towards the Synthesis of 5-Amino-l-lyxofuranosides and 4-Amino-lyxopyranosides and NMR Analysis
This work was supported jointly by the NSF Center for Chemical Evolution, Grant CHE-1504217.Publication History
Received: 02 April 2017
Accepted after revision: 12 May 2017
Publication Date:
01 June 2017 (online)
Abstract
The reactivity of trifluoromethanesulfonyl esters derived from l-lyxofuranosides and l-lyxopyranosides was investigated with various 5-aminopyrimidines as nucleophiles with the expectation to synthesize N-substituted 5-amino-ribosugars. The lyxopyranoside forms were found to be unreactive, while the lyxofuranoside forms were found to be reactive with 5-aminopyrimidines, yielding novel N-substituted 5-amino-lyxofuranosides. We report on the synthesis of these novel N-substituted lyxofuranosides and the systematic analyses of NMR data that demonstrate trends within each series: furano-, pyrano-, β- and α- anomers of l-lyxose and β-d-ribopyranoside forms. The data call for caution when identifying these monosaccharides in isomeric mixtures.
Key words
l-lyxofuranoses - l-lyxopyranoses - d-ribopyranoses - conformation analysis - heterocycles - NMR spectroscopySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1588859. It contains 1H, APT (or 13C) and 2D (HSQC and/or COSY) NMR spectral data of all compounds in CDCl3 and/or DMSO-d6. It also contains HMBC of the compounds 1, 5 and 12c, NOESY NMR spectra of compounds 2, 3, 5, 6, 12c, 15a and 18, a figure comparing APT NMR of lyxofuranoside 1–3 and lyxopyranosides 5–7, a figure comparing 1H NMR among the compounds 1 and 5, and crude material of 5, and experimental procedures for the synthesis of starting materials 1–7 and compound 19.
- Supporting Information
-
References
- 1 Mittapalli GK. Ravinder KR. Xiong H. Munoz O. De Riccardis F. Krishnamurthy R. Eschenmoser A. Angew. Chem. Int. Ed. 2007; 46: 2470
- 2 Mittapalli GK. Osornio YM. Guerrero MA. Ravinder KR. Krishnamurthy R. Eschenmoser A. Angew. Chem. Int. Ed. 2007; 46: 2478
- 3 Zhang X. Krishnamurthy R. Angew. Chem. Int. Ed. 2009; 48: 8124
- 4 Kini GD. Hennen WJ. J. Org. Chem. 1986; 51: 4436
- 5 Kini GD. Petrie CR. Hennen WJ. Dalley NK. Wilson BE. Robins RK. Carbohydr. Res. 1987; 159: 81
- 6 Varaprasad CV. Averett D. Ramasamy KS. Tetrahedron 1999; 55: 13345
- 7 Varaprasad CV. Ramasamy KS. Hong Z. J. Heterocycl. Chem. 2006; 43: 325
- 8 Wakharkar RD. Sahasrabuddhe MB. Borate HB. Gurjar MK. Synthesis 2004; 1830
- 9 Keck GE. Kachensky DF. Enholm EJ. J. Org. Chem. 1985; 50: 4317
- 10 Mohal N. Vasella A. Helv. Chim. Acta 2005; 88: 100
- 11 Mohal N. Bernet B. Vasella A. Helv. Chim. Acta 2005; 88: 3232
- 12 Keck GE. Wager TT. Duarte Rodriquez JF. J. Am. Chem. Soc. 1999; 121: 5176
- 13 Reist EJ. Fisher LV. Goodman L. J. Org. Chem. 1967; 32: 2541
- 14 Ozerov AA. Novikov MS. Brel’ AK. Solodunova GN. Chem. Heterocycl. Compd. 1998; 34: 611
- 15 Loksha YM. Globisch D. Pedersen EB. J. Heterocycl. Chem. 2008; 45: 1161
- 16 Boncel S. Gondela A. Mączka M. Tuszkiewicz-Kuźnik M. Grec P. Hefczyc B. Walczak K. Synthesis 2011; 603
- 17 Gems FR. Perrotta A. Hitching GH. J. Med. Chem. 1966; 9: 108
- 18 Sørensen MD. Khalifa NM. Pedersen EB. Synthesis 1999; 1937
- 19 Fang W.-P. Cheng Y.-T. Cheng Y.-R. Cherng Y.-J. Tetrahedron 2005; 61: 3107
- 20 Suchý M. Elmehriki AA. H. Hudson RH. E. Org. Lett. 2011; 13: 3952
- 21 Coleman RS. Felpin F.-X. Chen W. J. Org. Chem. 2004; 69: 7309
- 22 Kawana M. Kuzuhara H. Emoto S. Bull. Chem. Soc. Jpn. 1981; 54: 1492
- 23 Brimacombe JS. Hunedy F. Tucker LC. N. J. Chem. Soc. C 1968; 1381
- 24 Jogireddy R. Dakas P.-Y. Valot G. Barluenga S. Winssinger N. Chem. Eur. J. 2009; 15: 11498