Synthesis 2017; 49(18): 4335-4340
DOI: 10.1055/s-0036-1589060
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Bifunctional Furano-Allocolchicinoids

Iuliia A. Gracheva
a   Department of Chemistry, N. I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russian Federation   Email: afnn@rambler.ru
,
Elena V. Svirshchevskaya
b   Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russian Federation
,
Elena A. Zaburdaeva
a   Department of Chemistry, N. I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russian Federation   Email: afnn@rambler.ru
,
Alexey Yu. Fedorov*
a   Department of Chemistry, N. I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russian Federation   Email: afnn@rambler.ru
› Author Affiliations
We thank the Russian Science Foundation (Project 16-13-10248) for financial support.
Further Information

Publication History

Received: 08 April 2017

Accepted after revision: 29 May 2017

Publication Date:
26 June 2017 (online)


Abstract

An efficient seven-step semisynthetic approach towards non-racemic bifunctional furano-allocolchicinoids, starting from naturally occurring colchicine is presented. The Pd-catalyzed domino Sonogashira coupling/5-endo-dig cyclization was employed as the key step. The prepared compounds exhibited substantial cytotoxicity against T3M4, MiaPaCa-2, Colo-357, and PANC-1 cell lines. The presence of two functionalities with different reactivity (hydroxyl and amino groups) in the target molecules allows for an easy conjugation of furano-allocolchicinoids with drug delivery carriers, and opens promising opportunities for their further exploitation in the search of therapeutics.

Supporting Information

 
  • References

    • 1a Dumontet C. Jordan MA. Nat. Rev. Drug Discov. 2010; 9: 790
    • 1b Stanton RA. Gernert KM. Nettles JH. Aneja R. Med. Res. Rev. 2011; 31: 443
    • 1c Stanton RA. Gernert KM. Nettles JH. Aneja R. Med. Res. Rev. 2011; 31: 443
    • 1d Aeluri M. Chamakuri S. Dasari B. Guduru SK. R. Jimmidi R. Jogula S. Arya P. J. Med. Chem. 2014; 114: 4640
  • 2 Ghosh S. Jha S. Colchicine – An Overview for Plant Biotechnologists . In Bioactive Molecules and Medicinal Plants . Ramawat KG. Mérillon JM. Springer-Verlag; Berlin: 2008: 215
    • 3a Wood KW. Cornwell WD. Jackson JR. Curr. Opin. Pharmacol. 2001; 1: 370
    • 3b Graening T. Schmalz H.-G. Angew. Chem. Int. Ed. 2004; 43: 3230
    • 3c Ravelli RB. G. Gigant B. Curmi PA. Jourdain I. Lachkar S. Sobel A. Knossow M. Nature 2004; 428: 198
    • 4a Putterman C. Benchetrit E. Caraco Y. Levy M. Semin. Arthritis, Rheum. 1991; 21: 143
    • 4b Wiesenfeld PL. Garthoff LH. Sobotka TJ. Suagee JK. Barton CN. J. Appl. Toxicol. 2007; 27: 421
    • 4c Finkelstein Y. Aks SE. Hutson JR. Juurlink DN. Nguyen P. Dubnov-Raz G. Pollak U. Koren G. Bentur Y. Clin. Toxicol. 2010; 48: 407
  • 5 Pope RM. Tschopp J. Arthritis Rheum. 2007; 56: 3183
    • 6a Slobodnick A. Shah B. Pillinger MH. Krasnokutsky S. Am. J. Med. 2015; 128: 461
    • 6b Wallace SL. Arthritis Rheum. 2006; 2: 389
    • 6c Manna R. Curr. Drug Targets Inflamm. Allergy 2005; 4: 117
    • 6d Masuda K. Nakajima A. Urayama A. Nakae K. Kogure M. Inaba G. Lancet 1989; 1: 1093
    • 6e Nuki G. Curr. Rheumatol. Rep. 2008; 10: 218
  • 7 Imazio M. Gaita F. Future Cardiol. 2016; 12: 9
    • 8a Peña-Altamira E. Prati F. Massenzio F. Virgili M. Contestabile A. Bolognesi ML. Monti B. Expert Opin. Ther. Targets 2016; 20: 627
    • 8b Zhang J. Rane G. Dai X. Shanmugam MK. Arfuso F. Samy RP. Lai MK. P. Kappei D. Kumar AP. Sethi G. Ageing Res. Rev. 2016; 25: 55
    • 9a Marrelli M. Conforti F. Statti GA. Cachet X. Michel S. Tillequin F. Menichini F. Curr. Med. Chem. 2011; 18: 3035
    • 9b Shan Y. Zhang J. Liu Z. Wang M. Dong Y. Curr. Med. Chem. 2011; 18: 523
    • 9c Rajak H. Dewangan PK. Patel V. Jain DK. Singh A. Veerasamy R. Sharma PC. Dixit A. Curr. Pharm. Des. 2013; 19: 1923
    • 9d Brancale A. Silvestri R. Med. Res. Rev. 2007; 27: 209
    • 9e Combes S. Barbier P. Douillard S. McLeer-Florin A. Bourgarel-Rey V. Pierson J.-T. Fedorov AYu. Finet J.-P. Boutonnat J. Peyrot V. J. Med. Chem. 2011; 54: 3153
    • 9f Ganina OG. Daras E. Bourgarel-Rey V. Peyrot V. Andresyuk AN. Finet J.-P. Fedorov AYu. Beletskaya IP. Combes S. Bioorg. Med. Chem. 2008; 16: 8806
  • 10 For a review on allocolchicines, see: Sitnikov NS. Fedorov AYu. Russ. Chem. Rev. 2013; 82: 393
    • 11a Boye O. Brossi A. The Alkaloids: Chemistry and Pharmacology . Vol. 41. Brossi A. Cordell GA. Academic Press; San Diego: 1992: 125
    • 11b Boyer F.-D. Dubois J. Thoret S. Dau M.-ET. H. Hanna I. Bioorg. Chem. 2010; 38: 149
    • 11c Nicolaus N. Reball J. Sitnikov N. Velder J. Termath A. Fedorov AYu. Schmalz H.-G. Heterocycles 2011; 82: 1585
    • 11d Jain N. Yada D. Shaik TB. Vasantha G. Reddy PS. Kalivendi SV. Sreedhar B. ChemMedChem 2011; 6: 859
    • 11e Lu Y. Chen JJ. Xiao M. Li W. Miller DD. Pharm. Res. 2012; 29: 2943
    • 11f Chosson E. Santoro F. Rochais C. Santos JS.-d. O. Legay R. Thoret S. Cresteil T. Sinicropi MS. Besson T. Dallemagne P. Bioorg. Med. Chem. 2012; 20: 2014
    • 12a Sitnikov N. Velder J. Abodo L. Cuvelier N. Neudorfl J.-M. Prokop A. Krause G. Fedorov AYu. Schmalz H.-G. Chem. Eur. J. 2012; 18: 12096
    • 12b Sitnikov NS. Kokisheva AS. Fukin GK. Neudorfl J.-M. Sutorius H. Prokop A. Fokin VV. Schmalz H.-G. Fedorov AYu. Eur. J. Org. Chem. 2014; 29: 6481
    • 12c Sitnikov NS. Sintsov AV. Allegro D. Barbier P. Combes S. Onambele LA. Prokop A. Schmalz H.-G. Fedorov AYu. MedChemComm 2015; 6: 2158
  • 13 Voitovich YuV. Shegravina ES. Sitnikov NS. Faerman VI. Fokin VV. Schmalz H.-G. Combes S. Allegro D. Barbier P. Beletskaya IP. Svirshchevskaya EV. Fedorov AYu. J. Med. Chem. 2015; 58: 692
  • 14 Gracheva IuA. Voitovich IuV. Faerman VI. Sitnikov NS. Myrsikova EV. Schmalz H.-G. Svirshevskaya EV. Fedorov AYu. Eur. J. Med. Chem. 2017; 126: 432
    • 15a Ho RJ. Y. Chien J. J. Pharm. Sci. 2014; 103: 71
    • 15b Dai L. Liu J. Luo Z. Li M. Cai K. J. Mater. Chem. B 2016; 4: 6758
    • 15c Luhmann T. Meinel L. Curr. Opin. Biotechnol. 2016; 39: 35
    • 15d Hsu H.-J. Bugno J. Lee S. Hong S. WIREs Nanomed. Nanobiotechnol. 2017; 9: 1409
    • 15e Vahed SZ. Salehi R. Davaran S. Sharifi S. Mater. Sci. Eng. C 2017; 71: 1327
    • 16a Hamann PR. Hinman LM. Hollander I. Beyer CF. Lindh D. Holcomb R. Hallett W. Tsou HR. Upeslacis J. Shochat D. Mountain A. Flowers DA. Bernstein I. Bioconjugate Chem. 2002; 13: 47
    • 16b Gabizon A. Shmeeda H. Barenholz Y. Clin. Pharmacokinet. 2003; 42: 419
    • 16c Bagnato JD. Eilers AL. Horton RA. Grissom CB. J. Org. Chem. 2004; 69: 8987
    • 16d Homma A. Sato H. Okamachi A. Emura T. Ishizawa T. Kato T. Matsuura T. Sato S. Tamura T. Higuchi Y. Watanabe T. Kitamura H. Asanuma K. Yamazaki T. Ikemi M. Kitagawa H. Morikawa T. Ikeya H. Maeda K. Takahashi K. Nohmi K. Izutani N. Kanda M. Suzuki R. Biorg. Med. Chem. 2009; 17: 4647
    • 16e Moulari B. Béduneau A. Pellequer Y. Lamprecht A. J. Controlled Release 2014; 188: 9
    • 16f Ringhieri P. Diaferia C. Galdiero S. Palumbo R. Morelli G. Accardo A. J. Pept. Sci. 2015; 21: 415
    • 16g Chen LQ. Huang W. Gao ZG. Fang WS. Jin MJ. Int. J. Nanomed. 2016; 11: 5457
    • 16h Lee HJ. Park HH. Sohn Y. Ryu J. Park JH. Rhee WJ. Park TH. Appl. Microbiol. Biotechnol. 2016; 100: 10395
    • 16i Jaferian S. Soleymaninejad M. Negahdari B. Eatemadi A. Biomed. Pharmacother. 2017; 88: 1046
    • 16j Zhang M. Yuan P. Zhou N. Su Y. Shao M. Chi C. RSC Adv. 2017; 7: 9347
  • 17 Kuznetsova NR. Svirshevskaya EV. Sitnikov NS. Abodo L. Sutorius H. Zapke J. Velder J. Tomopoulou P. Oschkinat H. Prokop A. Schmalz H.-G. Fedorov AYu. Vodovozova EL. Russ. J. Bioorg. Chem. 2013; 39: 543
  • 18 Svirshchevskaya EV. Gracheva IuA. Kuznetsov AG. Myrsikova EV. Grechikhina MV. Zubareva AA. Fedorov AYu. Med. Chem. (Los Angeles) 2016; 6: 571
  • 19 Mosmann T. J. Immunol. Methods 1983; 65: 55