Synthesis 2017; 49(24): 5387-5395
DOI: 10.1055/s-0036-1589104
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient Lewis Acid Catalyzed Povarov Reaction for the One-Pot Stereocontrolled Synthesis of Polyfunctionalized Tetrahydroquinolines­

Cristina Cimarelli*
a   School of Science and Technology - Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy   Email: cristina.cimarelli@unicam.it
,
Samuele Bordi
a   School of Science and Technology - Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy   Email: cristina.cimarelli@unicam.it
,
Pamela Piermattei
a   School of Science and Technology - Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy   Email: cristina.cimarelli@unicam.it
,
Maura Pellei
a   School of Science and Technology - Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy   Email: cristina.cimarelli@unicam.it
,
Fabio Del Bello
b   School of Pharmacy - Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
,
Enrico Marcantoni
a   School of Science and Technology - Chemistry Division, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy   Email: cristina.cimarelli@unicam.it
› Author Affiliations
This work was supported by grants from University of Camerino (Fondo di Ateneo per la Ricerca 2014-2015).
Further Information

Publication History

Received: 13 July 2017

Accepted after revision: 09 August 2017

Publication Date:
07 September 2017 (online)


Abstract

An easy and efficient synthetic methodology for the one-pot stereocontrolled synthesis of tetrahydroquinolines through Lewis acid activated Povarov reaction is described. The protocol takes advantage of the very cheap, easy to handle, and environmentally friendly cerium trichloride as catalyst and allows to obtain either the anti- or the syn-isomer of the final tetrahydroquinoline with good selectivity, by performing the reaction in solvent or solventless conditions. The scope of the reaction is expanded to the one-pot synthesis of N-alkyltetrahydroquinolines through a very efficient iminium-Povarov approach. A deeper insight on the reaction system was provided by the study on the side reactions occurring in the reaction conditions and on the nature of the stereoselectivity.

Supporting Information

 
  • References

  • 1 Povarov LS. Russ. Chem. Rev. 1967; 36: 656

    • Selected reviews on the Povarov reaction:
    • 2a Glushkov VA. Tolstikov AG. Russ. Chem. Rev. 2008; 77: 137
    • 2b Kouznetsov VV. Tetrahedron 2009; 65: 2721
    • 2c Sridharan V. Suryavanshi PA. Menendez JC. Chem. Rev. 2011; 111: 7157
    • 2d Masson G. Lalli C. Benohoud M. Dagousset G. Chem. Soc. Rev. 2013; 42: 902
    • 2e Jiang XX. Wang R. Chem. Rev. 2013; 113: 5515
  • 3 Schiemann K. Finsinger D. Zenke F. Amendt C. Knoechel T. Bruge D. Buchstaller H.-P. Emde U. Staehle W. Anzali S. Bioorg. Med. Chem. Lett. 2010; 20: 1491 ; and references cited therein
    • 4a Venkat Narsaiah A. Ramesh Reddy A. Subba Reddy BV. Yadav JS. Synth. Commun. 2010; 40: 1750
    • 4b Yu Y. Zhou J. Yao Z. Xu F. Shen Q. Heteroat. Chem. 2010; 21: 351
    • 4c Zhou Z. Xu F. Han X. Zhou J. Shen Q. Eur. J. Org. Chem. 2007; 5265
  • 5 Palaniappan S. Rajender B. Umashankar M. J. Mol. Catal. A: Chem. 2012; 352: 70 ; and references cited therein
    • 6a Olmos A. Sommer J. Pale P. Chem. Eur. J. 2011; 17: 1907
    • 6b Kamble VT. Davane BS. Chavan SA. Muley DB. Atkore ST. Chin. Chem. Lett. 2010; 21: 265
    • 6c Kumar A. Srivastava S. Gupta G. Chaturvedi V. Sinha S. Srivastava R. ACS Comb. Sci. 2011; 13: 65
  • 7 Li L.-P. Cai X. Xiang Y. Zhang Y. Song J. Yang D.-C. Guan Z. He Y.-H. Green Chem. 2015; 17: 3148

    • For recent reviews on this argument, see:
    • 9a Dalpozzo R. De Nino A. Bartoli G. Sambri L. Marcantoni E. Recent Res. Dev. Org. Chem. 2001; 5: 181
    • 9b Bartoli G. Marcantoni E. Sambri L. Seminars in Organic Synthesis, XXV Summer School ‘A. Corbella’, Gargnano (BS). Italian Chemical Society; Rome: 2000: 117-138
    • 9c Liu HJ. Shia KS. Shang X. Zhu BY. Tetrahedron 1999; 55: 3803
  • 10 Bartoli G. Marcantoni E. Marcolini M. Sambri L. Chem. Rev. 2010; 110: 6104
  • 11 Properzi R. Marcantoni E. Chem. Soc. Rev. 2014; 43: 779
    • 12a Dhara D. Gayen KS. Khamarni S. Pandit P. Ghosh S. Maiti DK. J. Org. Chem. 2012; 77: 10441
    • 12b Kidwai M. Jahan A. J. Braz. Chem. Soc. 2010; 21: 2175
  • 13 Cioc RC. Ruijter E. Orru RV. A. Green Chem. 2014; 16: 2958
  • 14 Bartoli G. Marcantoni E. Sambri L. Synlett 2003; 2101 ; and references cited therein

    • For some selected examples, see:
    • 15a Li WZ. Peng Y. Org. Lett. 2005; 7: 3069
    • 15b Bartoli G. Giuliani A. Marcantoni E. Massaccesi M. Melchiorre P. Lanari S. Sambri L. Adv. Synth. Catal. 2005; 347: 1673
    • 15c Yeh MP. Yeh W. Tu L. Wu J. Tetrahedron 2006; 62: 7466
    • 15d Bartoli G. Beleggia R. Giuli S. Giuliani A. Marcantoni E. Massaccesi M. Paoletti M. Tetrahedron Lett. 2006; 47: 6501
    • 15e Kantevari S. Addla D. Sridhar B. Synthesis 2010; 3745
    • 15f Lee IY. Lee KC. Lee HW. Bull. Korean Chem. Soc. 2012; 33: 3535
    • 15g Nookaraju U. Begari E. Yetra RR. Kumar P. ChemistrySelect 2016; 1: 81
    • 15h Bartoli G. Bosco M. Carlone A. Locatelli L. Marcantoni E. Melchiorre P. Sambri L. Adv. Synth. Catal. 2006; 348: 905
    • 15i Bartoli G. Bosco M. Bellucci MC. Marcantoni E. Sambri L. Torregiani E. Eur. J. Org. Chem. 1999; 617
  • 16 Kobayashi S. Ishitani H. Nagayama S. Synthesis 1995; 1195
    • 17a Sridharan V. Suryavanshi PA. Menéndez JC. Chem. Rev. 2011; 111: 7157
    • 17b Powell DA. Batey RA. Org. Lett. 2002; 4: 2913
  • 18 Camps P. Formosa X. Galdeano C. Muñoz-Torrero D. Ramírez L. Gómez E. Isambert N. Lavilla R. Badia A. Clos MV. Bartolini M. Mancini F. Andrisano V. Arce MP. Rodríguez-Franco MI. Huertas Ó. Dafni T. Luque FJ. J. Med. Chem. 2009; 52: 5365
  • 19 Yamada N. Kadowaki S. Takahashi K. Umezu K. Biochem. Pharmacol. 1992; 44: 1211
  • 20 Mukherjee S. Pal M. Curr. Med. Chem. 2013; 20: 4386
  • 21 Majumdar KC. Ponra S. Ghosh T. Sadhukhan R. Ghosh U. Eur. J. Med. Chem. 2014; 71: 306
    • 22a Behbahani FK. Ziaei P. J. Korean Chem. Soc. 2014; 58: 44
    • 22b Yadav JS. Reddy BV. S. Srinivasa Rao R. Kiran Kumar S. Kunwar AC. Tetrahedron 2002; 58: 7891
    • 22c Cheng X. Hii KK. Tetrahedron 2001; 57: 5445
  • 23 Cimarelli C. Di Nicola M. Diomedi S. Giovannini R. Hamprect D. Properzi R. Sorana F. Marcantoni E. Org. Biomol. Chem. 2015; 13: 11687
  • 24 Bartoli G. Bartolacci M. Bosco M. Foglia G. Giuliani V. Marcantoni E. Sambri L. Torregiani E. J. Org. Chem. 2003; 68: 4594
  • 25 Bartoli G. Di Antonio G. Giuli S. Marcantoni E. Marcolini M. Paoletti M. Synthesis 2008; 320
  • 26 Bartoli G. Fernàndez-Bolaños JG. Di Antonio G. Foglia G. Giuli S. Gunnella R. Mancinelli M. Marcantoni E. Paoletti M. J. Org. Chem. 2007; 72: 6029 ; and references cited therein
  • 27 Katritzky AR. Rachwal S. Rachwal B. Tetrahedron 1996; 52: 15031
  • 28 Legros J. Crousse B. Ourevitch M. Bonnet-Delpon D. Synlett 2006; 1899
  • 30 Bartoli G. Giovannini R. Giuliani A. Marcantoni E. Massaccesi M. Melchiorre P. Paoletti M. Sambri L. Eur. J. Org. Chem. 2006; 1476
    • 31a Shindoh N. Tokuyama H. Takemoto Y. Takasu K. J. Org. Chem. 2008; 73: 7451
    • 31b Pericherla K. Kumar A. Jha A. Org. Lett. 2013; 15: 4078
  • 32 Mellor JM. Merriman GD. Tetrahedron 1995; 51: 6115