RSS-Feed abonnieren
DOI: 10.1055/s-0036-1589134
Scope and Optimization of the Double Knorr Cyclization: Synthesis of Novel Symmetrical and Unsymmetrical Tricyclic 1,8-Diazaanthraquinones
This work was supported by Hawaii Community Foundation grant (15ADVC-74422 and 16ADVC-78728) and UHH DKICP RTRF fund.Publikationsverlauf
Received: 13. September 2017
Accepted after revision: 19. Oktober 2017
Publikationsdatum:
20. November 2017 (online)
Abstract
The Knorr cyclization of β-ketoanilides to form 2-quinolones in the presence of acid is well documented chemistry. Double Knorr cyclization is rare, with very few examples appearing in the literature to date. The double Knorr methodology can provide access to tricyclic 1,8-diazaanthraquinones, a scaffold seen in the diazaquinomycin family. The optimized synthesis of diazaquinomycin A and structural analogues thereof via double Knorr cyclization of di-β-ketoanilide precursor substrates is reported. The scope and generality of the double Knorr cyclization were investigated along with an optimization study. The double Knorr cyclization was found to be sensitive to steric bulk on precursor substrates. In addition, the presence of a 5-hydroxy group on the 1,3-di-β-ketoanilide facilitated the double Knorr cyclization, possibly due to its stabilizing effect on the carbocation intermediates formed during the reaction.
Key words
diazaquinomycin A - double Knorr methodology - cyclization - di-β-ketoanilide - 1,8-diazaanthraquinoneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1589134.
- Supporting Information
-
References
- 1 http://www.who.int/mediacentre/factsheets/fs104/en/.
- 2 Martens E. Demain AL. J. Antibiot. 2017; 70: 520
- 3 Hoagland DT. Liu J. Lee RB. Lee RE. Adv. Drug Deliv. Rev. 2016; 102: 55
- 4 Mullowney MW. Hwang CH. Newsome AG. Wei X. Tanouye U. Wan B. Carlson S. Barranis NJ. Ainmhire E. Ó. Chen W.-L. Krishnamoorthy K. White J. Blair R. Lee H. Burdette JE. Rathod PK. Parish T. Cho S. Franzblau SG. Murphy BT. ACS Infect. Dis. 2015; 1: 168
- 5 Kelly TR. Field JA. Li Q. Tetrahedron Lett. 1988; 29: 3545
- 6 Bair JS. Palchaudhuri R. Hergenrother PJ. J. Am. Chem. Soc. 2010; 132: 5469
- 7 Perez JM. Lopez-Alvarado P. Avendano C. Menendez JC. Tetrahedron Lett. 1998; 39: 673
- 8 Lee H. Anderson WK. Tetrahedron Lett. 1990; 31: 4405
- 9 Perez JM. Lopez-Alvarado P. Pascual-Alfonso E. Avendano C. Menendez JC. Tetrahedron 2000; 56: 4575
- 10 Forbis RM. Rinehart KL. Jr. J. Am. Chem. Soc. 1973; 95: 5003
- 11 Nesterenko V. Ph.D. Thesis . University of Illinois at Urbana-Champaign; USA: 2006
- 12 Bair JS. Ph.D. Thesis . University of Illinois at Urbana-Champaign; USA: 2012
- 13 Nissen F. Detert H. Eur. J. Org. Chem. 2011; 15: 2845
- 14 Burger A. Fitchett GT. J. Am. Chem. Soc. 1953; 75: 1359
- 15 Ghorai D. Kumar S. Mani G. Dalton Trans. 2012; 41: 9503
- 16 Sai KK. Gilbert TM. Klumpp DA. J. Org. Chem. 2007; 72: 9761
- 17 Staskun B. J. Org. Chem. 1964; 29: 1153
- 18 Ōmura S. Iwai Y. Hinotozawa K. Tanaka H. Takahashi Y. Nakagawa A. J. Antibiot. 1982; 35: 1425
- 19 Ōmura S. Nakagawa A. Aoyama H. Hinotozawa K. Sano H. Tetrahedron Lett. 1983; 24: 3643