Synthesis 2018; 50(06): 1359-1367
DOI: 10.1055/s-0036-1589149
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Direct Halogenation of Unsymmetrical N-Benzyl- and N-Phenylureas with Trihaloisocyanuric Acids

Carlos M. Sanabria
Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68545, 21945-970, Rio de Janeiro, Brazil   Email: luciasequeira@yahoo.com.br   Email: mmattos@iq.ufrj.br
,
Bruno B. S. Costa
Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68545, 21945-970, Rio de Janeiro, Brazil   Email: luciasequeira@yahoo.com.br   Email: mmattos@iq.ufrj.br
,
Gil M. Viana
Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68545, 21945-970, Rio de Janeiro, Brazil   Email: luciasequeira@yahoo.com.br   Email: mmattos@iq.ufrj.br
,
Lúcia C. S. de Aguiar*
Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68545, 21945-970, Rio de Janeiro, Brazil   Email: luciasequeira@yahoo.com.br   Email: mmattos@iq.ufrj.br
,
Marcio C. S. de Mattos*
Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68545, 21945-970, Rio de Janeiro, Brazil   Email: luciasequeira@yahoo.com.br   Email: mmattos@iq.ufrj.br
› Author Affiliations
Further Information

Publication History

Received: 02 October 2017

Accepted after revision: 14 November 2017

Publication Date:
13 December 2017 (online)


Abstract

A simple and efficient methodology for the direct halogenation of N-phenylureas was developed using trihaloisocyanuric acids in acetonitrile at room temperature. This protocol proved to be effective for the construction of N-phenylureas with different patterns of substitution. Additionally, less reactive N-benzylureas were halogenated in the presence of a mixture of trifluoroacetic acid and acetonitrile at room temperature.

Supporting Information

 
  • References

    • 1a Kulikov OV. McCandless GT. Siriwardane DA. Sevryugina YV. Novak BM. Tetrahedron Lett. 2015; 56: 6309
    • 1b Kim JU. Schollmeyer D. Brehmer M. Zentel R. J. Colloid Interface Sci. 2011; 357: 428
    • 1c Chandran SK. Thakuria R. Nangia A. CrystEngComm 2008; 1891
  • 2 Kim JU. Davis R. Zentel R. J. Colloid Interface Sci. 2011; 359: 428
  • 3 Wang J. Jiang JZ. Chen W. Bai ZW. Carbohydr. Polym. 2016; 145: 78
    • 5a Benedí C. Bravo F. Uriz P. Fernández E. Claver C. Castillón S. Tetrahedron Lett. 2003; 44: 6073
    • 5b Smith K. El-Hiti GA. Hawes AC. Synthesis 2003; 2047
    • 5c Yin Y. Zheng K. Eid N. Howard S. Jeong JH. Yi F. Guo J. Park CM. Bibian M. Wu W. Hernandez P. Park H. Wu Y. Luo JL. Lograsso PV. Feng Y. J. Med. Chem. 2015; 58: 1846
  • 6 Li HQ. Lv PC. Yan T. Zhu HL. Anti-Cancer Agents Med. Chem. 2009; 9: 471
    • 7a Yao J. He Z. Chen J. Sun W. Fang H. Xu W. Bioorg. Med. Chem. Lett. 2012; 22: 6549
    • 7b Gamal El-Din MM. El-Gamal MI. Abdel-Maksoud MS. Yoo KH. Oh CH. Bioorg. Med. Chem. Lett. 2015; 25: 1692
    • 8a Fortin S. Moreau E. Lacroix J. Côté MF. Petitclerc É. Gaudreault RC. Eur. J. Med. Chem. 2010; 45: 2928
    • 8b Mounetou E. Miot-Noirault E. Gaudreault RC. Madelmont JC. Invest. New Drugs 2010; 28: 124
  • 9 Zhao B. Baston DS. Hammock B. Denison MS. J. Biochem. Mol. Toxicol. 2006; 20: 103
  • 10 El-Fantroussi S. Appl. Environ. Microbiol. 2000; 66: 5110
  • 11 Banerjee K. Oulkar DP. Patil SH. Dasgupta S. Nikam AT. Adsule PG. Bull. Environ. Contam. Toxicol. 2008; 80: 201
  • 12 Wang L. Chen W. Shao Z. Liu S. Yu Y. Curr. Org. Chem. 2013; 17: 3092
  • 13 Viana GM. de Aguiar LC. S. Ferrão J. Á. Simas AB. C. Vasconcelos MG. Tetrahedron Lett. 2013; 54: 936
  • 14 Sanabria CM. do Casal M. de Souza RB. A. de Aguiar LC. S. de Mattos MC. S. Synthesis 2017; 49: 1648
  • 15 Decker M. Si YG. Knapp BI. Bidlack JM. Neumeyer JL. J. Med. Chem. 2010; 53: 402
  • 16 Luzina EL. Popov AV. Eur. J. Med. Chem. 2010; 45: 5507
  • 17 Mendonça GF. de Mattos MC. S. Curr. Org. Synth. 2013; 10: 820
  • 18 Almeida LS. Esteves PM. de Mattos MC. S. Curr. Green Chem. 2014; 1: 94
  • 19 Almeida LS. Esteves PM. de Mattos MC. S. Synlett 2006; 1515
  • 20 Ribeiro RS. Esteves PM. de Mattos MC. S. Tetrahedron Lett. 2007; 48: 8747
  • 21 Ribeiro RS. Esteves PM. de Mattos MC. S. J. Braz. Chem. Soc. 2008; 19: 1239
  • 22 Ribeiro RS. Esteves PM. de Mattos MC. S. J. Braz. Chem. Soc. 2012; 23: 228
    • 23a Mendonça GF. Senra MR. Esteves PM. de Mattos MC. S. Appl. Catal., A 2011; 401: 176
    • 23b Almeida LS. Esteves PM. de Mattos MC. S. Tetrahedron Lett. 2009; 50: 3001
    • 23c Ribeiro RS. Esteves PM. de Mattos MC. S. Synthesis 2011; 739
    • 23d Almeida LS. de Mattos MC. S. Esteves PM. Synlett 2013; 24: 603
  • 24 Lin C.-C. Hsieh T.-H. Liao P.-Y. Liao Z.-Y. Chang C.-W. Shih Y.-C. Yeh W.-H. Chien T.-C. Org. Lett. 2014; 16: 892
  • 25 Li F. Sun C. Shan H. Zou X. Xie J. ChemCatChem 2013; 5: 1543
  • 26 Boivin JL. Boivin PA. Can. J. Chem. 1951; 29: 478
  • 27 Gold-Aubert P. Toribio L. Arch. Sci. 1963; 16: 405
  • 28 Ryoo JH. Kuramochi H. Omokawa H. Biosci., Biotechnol., Biochem. 1998; 62: 2189
  • 29 Perveen S. Fatima N. Khan MA. Dar A. Khan KM. Afza N. Voelter W. Med. Chem. Res. 2012; 21: 2709
  • 30 Mido Y. Furusawa C. J. Mol. Struct. 1982; 82: 23
  • 31 Kothandapani J. Ganesan A. Ganesan SS. Synthesis 2017; 49: 685
  • 32 Gonda J. Antalova Z. Collect. Czech. Chem. Commun. 1991; 56: 685
  • 33 Zheng QZ. Cheng K. Zhang XM. Liu K. Jiao QC. Zhu HL. Eur. J. Med. Chem. 2010; 45: 3207
  • 34 Dube P. Nathel NF. F. Vetelino M. Couturier M. Aboussafy CL. Pichette S. Jorgensen ML. Hardink M. Org. Lett. 2009; 11: 5622
  • 35 Boehmer JW. Recl. Trav. Chim. Pays-Bas 1936; 55: 379
  • 36 Scott JR. Cohen JB. J. Chem. Soc., Trans. 1923; 123: 3177
  • 37 Hutchby M. Houlden CE. Ford JG. Tyler SN. G. Gagné MR. Lloyd-Jones GC. Booker-Milburn KI. Angew. Chem. Int. Ed. 2009; 48: 8721
  • 38 Zhao J. Li Z. Yan S. Xu S. Wang MA. Fu B. Zhang Z. Org. Lett. 2016; 18: 1736