Synthesis 2017; 49(02): 371-382
DOI: 10.1055/s-0036-1589404
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Enantioenriched Phthalide and Isoindolinone Derivatives from 2-Formylbenzoic Acid

Dominik Niedek
Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany   eMail: prs@uni-giessen.de
,
Sören M. M. Schuler
Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany   eMail: prs@uni-giessen.de
,
Christian Eschmann
Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany   eMail: prs@uni-giessen.de
,
Raffael C. Wende
Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany   eMail: prs@uni-giessen.de
,
Alexander Seitz
Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany   eMail: prs@uni-giessen.de
,
Felix Keul
Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany   eMail: prs@uni-giessen.de
,
Peter R. Schreiner*
Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany   eMail: prs@uni-giessen.de
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 28. Juli 2016

Accepted after revision: 05. Oktober 2016

Publikationsdatum:
03. November 2016 (online)


This manuscript is dedicated to Prof. Dieter Enders on the occasion of his 70th birthday and for his seminal contributions to organic chemistry.

Abstract

Transformations of 2-formylbenzoic acid provide direct access to a series of heterocyclic organic compounds such as phthalides and isoindolinones. Here, we use (+)-cinchonine as a catalyst in conjunction with nonafluoro-tert-butanol as a hydrogen-bond donor to afford enantiomerically enriched acylated 3-hydroxyphthalides with up to 99% yield and 90% ee through dynamic kinetic resolution. Moreover, various 3-alkoxyphthalides as well as 2-alkyl-3-hydroxy-1-isoindolinones were synthesized from 2-formylbenzoic acid.

Supporting Information

 
  • References

  • 1 Racine S. Ber. Dtsch. Chem. Ges. 1886; 19: 778
  • 2 Wheeler DD, Young DC, Erley DS. J. Org. Chem. 1957; 22: 547
  • 3 Kagan J. J. Org. Chem. 1967; 32: 4060
  • 4 Aksjonova K, Belyakov S, Liepinsh E, Boman A, Lundstedt T, Lek P, Trapencieris P. Synthesis 2012; 44: 2200
  • 5 Csende F. ARKIVOC 2006; (vi): 174
  • 6 Cho CS, Baek DY, Shim SC. J. Heterocycl. Chem. 1999; 36: 289
  • 7 Cho CS, Baek DY, Kim H.-Y, Shim SC, Oh DH. Synth. Commun. 2000; 30: 1139
  • 8 Cho CS, Kim JU, Choi H.-J. J. Organomet. Chem. 2008; 693: 3677
  • 9 Cho CS, Lim DK, Kim T.-J, Shim SC. J. Chem. Res. 2002; 550
  • 10 Shim SC, Lee DY, Jiang LH, Kim TJ, Cho S.-D. J. Heterocycl. Chem. 1995; 32: 363
  • 11 Nandakumar M, Sankar E, Mohanakrishnan AK. Synlett 2014; 25: 509
  • 12 Sueki S, Wang Z, Kuninobu Y. Org. Lett. 2016; 18: 304
  • 13 Renzetti A, Nakazawa H, Li C.-J. RSC Adv. 2016; 6: 40626
  • 14 Zhang H, Zhang S, Liu L, Luo G, Duan W, Wang W. J. Org. Chem. 2010; 75: 368
  • 15 Knepper K, Ziegert RE, Bräse S. Tetrahedron 2004; 60: 8591
  • 16 Loughlin WA, Jenkins ID, Henderson LC, Campitelli MR, Healy PC. J. Org. Chem. 2008; 73: 3435
  • 17 Broadhurst MJ, Hassall CH. J. Chem. Soc., Perkin Trans. 1 1982; 2227
  • 18 Bates MA, Sammes PG, Thomson GA. J. Chem. Soc., Perkin Trans. 1 1988; 3037
  • 19 Maslat AO, Al-Hamdany R, Fataftah Z, Mahrath AJ, Abussaud MJ. Toxicol. Environ. Chem. 2003; 85: 149
  • 20 Brimble MA, Caprio VE, Johnston AD, Sidford MH. Tetrahedron Lett. 2000; 41: 3955
  • 21 Sperry J, Liu Y.-C, Brimble MA. Org. Biomol. Chem. 2010; 8: 29
  • 22 da Silva Maia AF, Siqueira RP, de Oliveira FM, Ferreira JG, da Silva SF, Caiuby CA. D., de Oliveira LL, de Paula SO, Souza RA. C, Guilardi S, Bressan GC, Teixeira RR. Bioorg. Med. Chem. Lett. 2016; 26: 2810
  • 23 Gong W, Zhou Y, Li X, Gao X, Tian J, Qin X, Du G. Molecules 2016; 21: 549
  • 24 Mal D, Ghosh K, Jana S. Org. Lett. 2015; 17: 5800
  • 25 Beck JJ, Chou S.-C. J. Nat. Prod. 2007; 70: 891
  • 26 Karmakar R, Pahari P, Mal D. Chem. Rev. 2014; 114: 6213
  • 27 Brimble MA, Caprio V, Johnston AD, Sidford M. Synthesis 2001; 855
  • 28 Hamura T, Hosoya T, Yamaguchi H, Kuriyama Y, Tanabe M, Miyamoto M, Yasui Y, Matsumoto T, Suzuki K. Helv. Chim. Acta 2002; 85: 3589
  • 29 Kamata S, Haga N, Matsui T, Nagata W. Chem. Pharm. Bull. 1985; 33: 3160
  • 30 Marchand-Brynaert J, Laub R, De Meester F, Frêre J.-M. Eur. J. Med. Chem. 1988; 23: 561
  • 31 Ogawa T, Araki M, Miyamae T, Okayama T, Hagiwara M, Sakurada S, Morikawa T. Chem. Pharm. Bull. 2003; 51: 759
  • 32 Grasa GA, Singh R, Nolan SP. Synthesis 2004; 971
  • 33 Lee JH, Han K, Kim M.-J, Park J. Eur. J. Org. Chem. 2010; 999
  • 34 Kubota M, Yamamoto T, Yamamoto A. Bull. Chem. Soc. Jpn. 1979; 52: 146
  • 35 Romanski J, Nowak P, Kosinski K, Jurczak J. Tetrahedron Lett. 2012; 53: 5287
  • 36 Nudelman A, Ruse M, Aviram A, Rabizadeh E, Shaklai M, Zimrah Y, Rephaeli A. J. Med. Chem. 1992; 35: 687
  • 37 Yamada S, Yamashita K. Tetrahedron Lett. 2008; 49: 32
  • 38 Yamada S, Noguchi E. Tetrahedron Lett. 2001; 42: 3621
  • 39 Speck K, Magauer T. Beilstein J. Org. Chem. 2013; 9: 2048
  • 40 Smith K, El-Hiti GA, Hegazy AS, Kariuki B. Beilstein J. Org. Chem. 2011; 7: 1219
  • 41 Zhuang Z.-P, Kung M.-P, Mu M, Kung HF. J. Med. Chem. 1998; 41: 157
  • 42 Agouridas V, Capet F, Couture A, Deniau E, Grandclaudon P. Tetrahedron: Asymmetry 2011; 22: 1441
  • 43 Comins DL, Schilling S, Zhang Y. Org. Lett. 2005; 7: 95
  • 44 More V, Rohlmann R, Mancheno OG, Petronzi C, Palombi L, Rosa AD, Mola AD, Massa A. RSC Adv. 2012; 2: 3592
  • 45 Heaney H, Shuhaibar KF. Synlett 1995; 47
  • 46 Ding G, Li C, Shen Y, Lu B, Zhang Z, Xie X. Adv. Synth. Catal. 2016; 358: 1241
  • 47 Brewster JH, Fusco AM, Carosino LE, Corman BG. J. Org. Chem. 1963; 28: 498
  • 48 Lixin W, Jiyu W, Fan Y, Jianfeng S, Wen W. Lett. Org. Chem. 2008; 5: 26
  • 49 Ding G, Lu B, Li Y, Wan J, Zhang Z, Xie X. Adv. Synth. Catal. 2015; 357: 1013
  • 50 Cabrero-Antonino JR, Sorribes I, Junge K, Beller M. Angew. Chem. Int. Ed. 2016; 55: 387
  • 51 Romney DK, Miller SJ. Org. Lett. 2012; 14: 1138
  • 52 Müller CE, Wanka L, Jewell K, Schreiner PR. Angew. Chem. Int. Ed. 2008; 47: 6180
  • 53 Hrdina R, Müller CE, Wende RC, Wanka L, Schreiner PR. Chem. Commun. 2012; 48: 2498
  • 54 Hofmann C, Schuler SM. M, Wende RC, Schreiner PR. Chem. Commun. 2014; 50: 1221
  • 55 Hofmann C, Schümann JM, Schreiner PR. J. Org. Chem. 2015; 80: 1972
  • 56 Wende RC, Seitz A, Niedek D, Schuler SM. M, Hofmann C, Becker J, Schreiner PR. Angew. Chem. Int. Ed. 2016; 55: 2719
  • 57 Vakulya B, Varga S, Csámpai A, Soós T. Org. Lett. 2005; 7: 1967
  • 58 Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
  • 59 Sohtome Y, Tanatani A, Hashimoto Y, Nagasawa K. Tetrahedron Lett. 2004; 45: 5589
  • 60 Neises B, Steglich W. Angew. Chem., Int. Ed. Engl. 1978; 17: 522
  • 61 Hrdina R, Müller CE, Schreiner PR. Chem. Commun. 2010; 46: 2689
  • 62 Matsuda T, Suzuki K, Abe S, Kirikae H, Okada N. Tetrahedron 2015; 71: 9264
  • 63 Chiurato M, Routier S, Troin Y, Guillaumet G. Eur. J. Org. Chem. 2009; 3011
  • 64 Yagishita F, Ishikawa H, Onuki T, Hachiya S, Mino T, Sakamoto M. Angew. Chem. Int. Ed. 2012; 51: 13023
  • 65 Steendam RR. E, Kulka MW, Meekes H, van Enckevort WJ. P, Raap J, Vlieg E, Rutjes FP. J. T. Eur. J. Org. Chem. 2015; 7249
  • 66 Gottlieb HE, Kotlyar V, Nudelman A. J. Org. Chem. 1997; 62: 7512
  • 67 Qu H, Chi C. Org. Lett. 2010; 12: 3360
  • 68 Dempster RK, Luzzio FA. Tetrahedron Lett. 2011; 52: 4992
  • 69 DoMinh D, Stern MH, Giannini DD, Kelts LW. Tetrahedron 1983; 39: 1667
  • 70 Reynolds RD, Conboy RJ. J. Org. Chem. 1965; 30: 2251
  • 71 Reynolds RD, Arendsen DL, Guanci DF, Wickman RF. J. Org. Chem. 1970; 35: 3940
  • 72 Sharfuddin M, Narumi A, Iwai Y, Miyazawa K, Yamada S, Kakuchi T, Kaga H. Tetrahedron: Asymmetry 2003; 14: 1581