Synthesis 2017; 49(03): 451-471
DOI: 10.1055/s-0036-1589470
review
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Cascade Reactions under N-Heterocyclic Carbene Catalysis

Efraím Reyes*
Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain   Email: efraim.reyes@ehu.es   Email: joseluis.vicario@ehu.es
,
Uxue Uria
Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain   Email: efraim.reyes@ehu.es   Email: joseluis.vicario@ehu.es
,
Luisa Carrillo
Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain   Email: efraim.reyes@ehu.es   Email: joseluis.vicario@ehu.es
,
Jose L. Vicario*
Department of Organic Chemistry II, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain   Email: efraim.reyes@ehu.es   Email: joseluis.vicario@ehu.es
› Author Affiliations
Further Information

Publication History

Received: 09 July 2016

Accepted after revision: 28 July 2016

Publication Date:
30 November 2016 (online)


Abstract

The use of chiral N-heterocyclic carbenes (NHCs) as catalysts in asymmetric synthesis has opened a wide range of applications due to their unique ability to generate reaction intermediates with unusual reactivity patterns that very often involve the reversal of the typical polarity associated with the functional groups present in the starting materials. In this sense, the direct activation of aldehydes or surrogates by these reactive species provides different chemical structures (conjugated Breslow intermediates, azolium enolates and dienolates, or unsaturated acyl azolium cations) which constitute excellent platforms for initiating cascade or domino reactions in the presence of a polyfunctional reagent.

1 Introduction

2 Cascade Reactions Initiated by the Participation of Homoenolate Equivalents

3 Cascade Reactions Initiated by the Participation of Azolium Enolates

4 Cascade Reactions Initiated by the Participation of Dienolate Equivalents

5 Cascade Reactions Initiated by the Participation of α,β-Unsaturated Acyl Azolium Intermediates

6 Summary and Outlook

 
  • References

  • 1 The concept of biomimetic synthesis was introduced by Robinson: Robinson R. J. Chem. Soc. 1917; 111: 762

    • For selected reviews covering the concept of biomimetic synthesis, see:
    • 2a Torre MC, Sierra MA. Angew. Chem. Int. Ed. 2004; 43: 160
    • 2b Scholz U, Winterfeldt E. Nat. Prod. Rep. 2000; 17: 349
    • 2c Heathcock CH. Angew. Chem. Int. Ed. 1992; 31: 665
  • 3 Kluger R, Tittmann K. Chem. Rev. 2008; 108: 1797
    • 4a Ugai T, Tnaka R, Dokawa T. J. Pharm. Soc. Jpn. 1943; 63: 296
    • 4b Breslow R. J. Am. Chem. Soc. 1958; 80: 3719

    • For a recent review in benzoin condensations, see:
    • 4c Bugaut X. Benzoin and Aza-Benzoin. In Comprehensive Organic Synthesis. 2nd ed.; Molander GA, Knochel P. Elsevier; Oxford: 2014: Vol. 1: 424-470
    • 4d Bourissou D, Guerret O, Gabbai FP, Bertrand G. Chem. Rev. 2000; 100: 39

      For selected reviews in NHC catalysis, see:
    • 5a Flanigan DM, Romano-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 5b Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
    • 5c Gu J, Du W, Chen Y.-C. Synthesis 2015; 47: 3451
    • 5d Yetra SR, Patra A, Biju AT. Synthesis 2015; 47: 1357
    • 5e Mahatthananchai J, Bode JW. Acc. Chem. Res. 2014; 47: 696
    • 5f Dwivedi S, Gupta S, Das S. Curr. Organocat. 2014; 1: 13
    • 5g Ryan SJ, Candish L, Lupton DW. Chem. Soc. Rev. 2013; 42: 4906
    • 5h Fevre M, Pinaud J, Gnanou Y, Vignolle J, Taton D. Chem. Soc. Rev. 2013; 42: 2142
    • 5i Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 5j Philips EM, Chan A, Scheidt KA. Aldrichimica Acta 2009; 42: 55
    • 5k Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 6a Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485

    • See also:
    • 6b Bode JW. Nat. Chem. 2013; 5: 813

      Review on NHC-catalyzed domino reactions:
    • 7a Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314

    • For general reviews on cascade or domino reactions:
    • 7b Wang Y, Lu H, Xu P.-F. Acc. Chem. Res. 2015; 48: 1832
  • 8 Wang MH, Cohen DT, Schwamb B, Mishra RK, Scheidt KA. J. Am. Chem. Soc. 2015; 137: 5891

    • Pioneering reports in non-stereoselective versions:
    • 9a Burstein C, Glorius F. Angew. Chem. Int. Ed. 2004; 43: 6205
    • 9b Sohn SS, Rosen EL, Bode JW. J. Am. Chem. Soc. 2004; 126: 14370
    • 9c He M, Bode JW. Org. Lett. 2005; 7: 3131
    • 9d Schrader W, Handayani PP, Burstein C, Glorius F. Chem. Commun. 2007; 716
  • 10 Jang KP, Hutson GE, Johnston RC, McCusker EO, Cheong PH.-Y, Scheidt KA. J. Am. Chem. Soc. 2014; 136: 76
    • 11a Li J.-L, Sahoo B, Daniliuc C.-G, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 10515
    • 11b Dugal-Tessier J, O’Bryan EA, Schroeder TB. H, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 4963
    • 11c Sun L.-H, Shen L.-T, Ye S. Chem. Commun. 2011; 47: 10136
    • 12a Lv H, Tiwari B, Mo J, Xing C, Chi YR. Org. Lett. 2012; 14: 5412
    • 12b Zhang B, Feng P, Sun L.-H, Cui Y, Ye S, Jiao N. Chem. Eur. J. 2012; 18: 9198
  • 13 Zhao X, DiRocco DA, Rovis T. J. Am. Chem. Soc. 2011; 133: 12466
  • 14 Rommel M, Fukuzumi T, Bode JW. J. Am. Chem. Soc. 2008; 130: 17266
    • 15a Ema T, Akihara K, Obayashi R, Sakai T. Adv. Synth. Catal. 2012; 354: 3283
    • 15b See also ref. 8.
    • 16a Struble JR, Kaeobamrung J, Bode JW. Org. Lett. 2008; 10: 957
  • 17 Chan A, Scheidt KA. J. Am. Chem. Soc. 2008; 130: 2740
    • 19a Hirano K, Piel I, Glorius F. Adv. Synth. Catal. 2008; 350: 984
    • 19b Ishida Y, Kawatsu K, Matsuoka Y, Yamada K, Ikariya R, Sawayama J, Hirao S, Nishiwaki N, Saigo K. Asian J. Org. Chem. 2013; 2: 140
  • 20 Raup DE. A, Cardinal-David B, Holte D, Scheidt KA. Nat. Chem. 2010; 2: 766
    • 21a Li Y, Zhao Z.-A, He H, You S.-L. Adv. Synth. Catal. 2008; 350: 1885
    • 21b Goodman CG, Walker MM, Johnson JS. J. Am. Chem. Soc. 2015; 137: 122
    • 22a Phillips EM, Reynolds TE, Scheidt KA. J. Am. Chem. Soc. 2008; 130: 2416

    • See also:
    • 22b Xu J, Hu S, Lu Y, Dong Y, Tang W, Lu T, Du D. Adv. Synth. Catal. 2015; 357: 923
  • 23 Chan A, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 5334
  • 24 Guo C, Fleige M, Janssen-Müller D, Daniliuc CG, Glorius F. Nat. Chem. 2015; 7: 842
  • 25 Chiang P.-C, Kaeobamrung J, Bode JW. J. Am. Chem. Soc. 2007; 129: 3520
    • 26a Nair V, Vellalath S, Poonoth M, Suresh E. J. Am. Chem. Soc. 2006; 128: 8736
    • 26b Verma P, Patni PA, Sunoj RB. J. Org. Chem. 2011; 76: 5606
    • 26c Domingo LR, Zaragoza RJ, Arno M. Org. Biomol. Chem. 2010; 8: 4884
    • 27a He M, Bode JW. J. Am. Chem. Soc. 2008; 130: 418

    • See also:
    • 27b Jiang K, Tiwari B, Chi YR. Org. Lett. 2012; 14: 2382
    • 27c Chen X, Fang X, Chi YR. Chem. Sci. 2013; 4: 2613
  • 28 Mukherjee S, Mondal S, Patra A, Gonnade RG, Biju AT. Chem. Commun. 2015; 51: 9559
  • 29 Cardinal-David B, Raup DE. A, Scheidt KA. J. Am. Chem. Soc. 2010; 132: 5345
  • 30 Kaeobamrung J, Bode JW. Org. Lett. 2009; 11: 677
  • 31 Nair V, Babu BP, Vellalath S, Varghese V, Raveendran AE, Suresh E. Org. Lett. 2009; 11: 2507
  • 32 Cohen DT, Cardinal-David B, Scheidt KA. Angew. Chem. Int. Ed. 2011; 50: 1678
  • 33 Cohen DT, Cardinal-David B, Roberts JM, Sarjeant AA, Scheidt KA. Org. Lett. 2011; 13: 1068
  • 34 Guo C, Schedler M, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 10232
  • 35 Patra A, Bhunia A, Yetra SR, Gonnade RG, Biju AT. Org. Chem. Front. 2015; 2: 158
    • 36a Maji B, Ji L, Wang S, Vedachalam S, Rakesh G, Liu X.-W. Angew. Chem. Int. Ed. 2012; 51: 8276

    • For a previous non-stereoselective version, see:
    • 36b Nair V, Sinu CR, Babu BP, Varghese V, Jose A, Suresh E. Org. Lett. 2009; 11: 5570

    • For a mechanistic computational study, see:
    • 36c Zhang Q, Yu H.-Z, Fu Y. Org. Chem. Front. 2014; 1: 614
    • 37a White NA, DiRocco DA, Rovis T. J. Am. Chem. Soc. 2013; 135: 8504
    • 37b White NA, Ozboya KE, Flanigan DM, Rovis T. Asian J. Org. Chem. 2014; 3: 442
  • 38 Shu T, Ni Q, Song X, Zhao K, Wu T, Puttreddy R, Rissanen K, Enders D. Chem. Commun. 2016; 52: 2609
  • 39 Lv H, Jia W.-Q, Sun H.-L, Ye S. Angew. Chem. Int. Ed. 2013; 52: 8607
  • 40 Izquierdo J, Orue A, Scheidt KA. J. Am. Chem. Soc. 2013; 135: 10634
  • 41 Liang Z.-Q, Gao Z.-H, Jia W.-Q, Ye S. Chem. Eur. J. 2015; 21: 1868
  • 42 Wang M, Rong Z.-Q, Zhao Y. Chem. Commun. 2014; 50: 15309
  • 43 Guo C, Fleige M, Janssen-Muller D, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2016; 138: 7840
    • 44a Fang X, Jiang K, Xing C, Hao L, Chi YR. Angew. Chem. Int. Ed. 2011; 50: 1910

    • For a related example, see:
    • 44b Tang M.-S, Zhao Y, Cheng Y. Synthesis 2014; 46: 87
  • 45 Berkessel A, Yatham VR, Elfert S, Neudorfl J.-M. Angew. Chem. Int. Ed. 2013; 52: 11158
  • 46 Guo C, Sahoo B, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2014; 136: 17402
  • 47 Fu Z, Xu J, Zhu T, Leong WW. Y, Chi YR. Nat. Chem. 2013; 5: 835
  • 48 Fu Z, Jiang K, Zhu T, Torres J, Chi YR. Angew. Chem. Int. Ed. 2014; 53: 6506
  • 49 Jin Z, Chen S, Wang Y, Zheng P, Yang S, Chi YR. Angew. Chem. Int. Ed. 2014; 53: 13506
  • 50 Xie Y, Yu C, Li T, Tu S, Yao C. Chem. Eur. J. 2015; 21: 5355
  • 51 Qi J, Xie X, Han R, Ma D, Yang J, She X. Chem. Eur. J. 2013; 19: 4146
    • 52a Zhang Y, Lu Y, Tang W, Lu T, Du D. Org. Biomol. Chem. 2014; 12: 3009

    • For the use of β-bromoenals as alkynal equivalents in this reaction, see:
    • 52b Zheng C, Yao W, Zhang Y, Ma C. Org. Lett. 2014; 16: 5028
  • 53 Lee A, Scheidt KA. Angew. Chem. Int. Ed. 2014; 53: 7594
    • 54a Review: Vora HU, Wheeler P, Rovis T. Adv. Synth. Catal. 2012; 354: 1617

    • See also:
    • 54b Maji B, Mayr H. Angew. Chem. Int. Ed. 2013; 52: 11163
    • 55a Douglas JJ, Ghurchill G, Slawin AM. Z, Fox DJ, Smith AD. Chem. Eur. J. 2015; 21: 16354

    • See also:
    • 55b Douglas J, Taylor JE, Churchill G, Slawin AM. Z, Smith AD. J. Org. Chem. 2013; 78: 3925
    • 55c Vasu P, Reddy G, Tabassum S, Blanrue A, Wilhelm R. Chem. Commun. 2009; 5910
    • 55d He L, Lv H, Zhang Y.-R, Ye S. J. Org. Chem. 2008; 73: 8101
    • 55e Wang X.-N, Shao P.-L, Ye S. Org. Lett. 2009; 11: 4029
    • 56a Zhang Y.-R, He L, Wu X, Shao P.-L, Ye S. Org. Lett. 2008; 10: 277

    • See also:
    • 56b Duguet N, Campbell CD, Slawin AM. Z, Smith AD. Org. Biomol. Chem. 2008; 6: 1108
    • 56c Zhang H.-M, Gao Z.-H, Ye S. Org. Lett. 2014; 16: 3079
    • 56d Wang X.-N, Shen L.-T, Ye S. Org. Lett. 2011; 13: 6382
    • 56e Wang X.-N, Shen L.-T, Ye S. Chem. Commun. 2011; 47: 8388
  • 57 Zhang Y.-R, Lv H, Zhou D, Ye S. Chem. Eur. J. 2008; 14: 8473
  • 58 Leckie SM, Fallan C, Taylor JE, Brown TB, Pryde D, Lebl T, Slawin AM. Z, Smith AD. Synlett 2013; 24: 1243
  • 59 Leckie SM, Brown TB, Pryde D, Lebl T, Slawin AM. Z, Smith AD. Org. Biomol. Chem. 2013; 11: 3230
  • 60 Lv H, You L, Ye S. Adv. Synth. Catal. 2009; 351: 2822
  • 61 Jian T.-Y, Shao P.-L, Ye S. Chem. Commun. 2011; 47: 2381
  • 62 Huang X.-L, He L, Shao P.-L, Ye S. Angew. Chem. Int. Ed. 2009; 48: 192
  • 63 He M, Struble JR, Bode JW. J. Am. Chem. Soc. 2006; 128: 8418
  • 64 Kaeobamrung J, Kozlowski MC, Bode JW. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20661
  • 65 Fu Z, Sun H, Chen S, Tiwari B, Li G, Chi YR. Chem. Commun. 2013; 49: 261
  • 66 Fang X, Chen X, Chi Y.-R. Org. Lett. 2011; 13: 4708
  • 67 McCusker EO, Scheidt KA. Angew. Chem. Int. Ed. 2013; 52: 13616
    • 68a Phillips EM, Wadamoto M, Chan A, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 3107

    • For a related example, see:
    • 68b Li Y, Wang X.-Q, Zheng C, You S.-L. Chem. Commun. 2009; 5823
  • 69 Wang L, Ni Q, Blumel M, Shu T, Raabe G, Enders D. Chem. Eur. J. 2015; 21: 8033
  • 70 Xu JF, Chen XK, Wang M, Zheng PC, Song BA, Chi YR. Angew. Chem. Int. Ed. 2015; 54: 5161
  • 71 Wu Z, Wang X, Li F, Wu J, Wang J. Org. Lett. 2015; 17: 3588
  • 72 Wadamoto M, Phillips EM, Reynolds TE, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 10098
    • 73a Cohen DT, Eichman CC, Phillips EM, Zarefsky ER, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 7309
    • 73b Johnston RC, Cohen DT, Eichman CC, Scheidt KA, Cheong PH.-Y. Chem. Sci. 2014; 5: 1974
    • 73c Cohen DT, Johnston RC, Rosson NT, Cheong PH.-Y, Scheidt KA. Chem. Commun. 2015; 51: 2690

      Pioneering report (achiral version):
    • 74a Reynolds NT, Read de Alaniz J, Rovis T. J. Am. Chem. Soc. 2004; 126: 9518

    • Enantioselective version:
    • 74b Reynolds NT, Rovis T. J. Am. Chem. Soc. 2005; 127: 16406

    • See also:
    • 74c Vora HU, Rovis T. J. Am. Chem. Soc. 2007; 129: 13796
  • 75 Kawanaka Y, Phillips EM, Scheidt KA. J. Am. Chem. Soc. 2009; 131: 18028
    • 76a Taylor JE, Daniels DS. B, Smith AD. Org. Lett. 2013; 15: 6058

    • See also:
    • 76b Yang L, Wang F, Lee R, Lv Y, Huang K.-W, Zhong G. Org. Lett 2014; 16: 3872
    • 77a He M, Uc GJ, Bode JW. J. Am. Chem. Soc. 2006; 128: 15088

    • See also:
    • 77b He M, Beahm BJ, Bode JW. Org. Lett. 2008; 10: 3817
    • 77c Rong Z.-Q, Jia M.-Q, You S.-L. Tetrahedron 2011; 67: 9329
  • 78 Davies AT, Taylor JE, Douglas J, Collet CJ, Morrill LC, Fallan C, Slawin AM. Z, Churchill G, Smith AD. J. Org. Chem. 2013; 78: 9243
  • 79 Ni Q, Song X, Xiong J, Raabe G, Enders D. Chem. Commun. 2015; 51: 1263
  • 80 Yang L, Wang F, Chua PJ, Lv Y, Zhong L.-J, Zhong G. Org. Lett. 2012; 14: 2894
  • 81 Rong Z.-Q, Wang M, Chow CH. E, Zhao Y. Chem. Eur. J. 2016; 22: 9483
  • 82 Jian TY, Sun L.-H, Ye S. Chem. Commun. 2012; 48: 10907
  • 83 Zhang H.-M, Lv H, Ye S. Org. Biomol. Chem. 2013; 11: 6255
  • 84 Song X, Ni Q, Zhu C, Raabe G, Enders D. Synthesis 2014; 46: 421
  • 85 Ni Q, Zhang H, Grossmann A, Loh CC. J, Merkens C, Enders D. Angew. Chem. Int. Ed. 2013; 52: 13562
  • 86 Gao Z.-H, Chen X.-Y, Cheng J.-T, Liao W.-L, Ye S. Chem. Commun. 2015; 51: 9328
    • 87a Zhao X, Ruhl KE, Rovis T. Angew. Chem. Int. Ed. 2012; 51: 12330

    • For related examples, see:
    • 87b Mo J, Yang R, Chen X, Tiwari B, Chi YR. Org. Lett. 2013; 15: 50
    • 87c Lin L, Yang Y, Wang M, Lai L, Guo Y, Wang R. Chem. Commun. 2015; 51: 8134
    • 88a Li F, Wu Z, Wang J. Angew. Chem. Int. Ed. 2015; 54: 656
    • 88b Dong X, Yang W, Hu W, Sun J. Angew. Chem. Int. Ed. 2015; 54: 660
    • 89a Hao L, Du Y, Lv H, Chen X, Jiang H, Shao Y, Chi YR. Org. Lett. 2012; 14: 2154
    • 89b Hao L, Chen S, Xu J, Tiwari B, Fu Z, Li T, Lim J, Chi YR. Org. Lett. 2013; 15: 4956

    • For another example of related [4+2]-type reactivity, see:
    • 89c Hao L, Chuen CW, Ganguly R, Chi YR. Synlett 2013; 24: 1197
  • 90 Lee A, Younai A, Price CK, Izquierdo J, Mishra RK, Scheidt KA. J. Am. Chem. Soc. 2014; 136: 10589
    • 91a Lv H, Mo J, Fang X, Chi YR. Org. Lett. 2011; 13: 5366

    • For a pioneering report, see:
    • 91b Sohn SS, Bode JW. Angew. Chem. Int. Ed. 2006; 45: 602
  • 92 Shen L.-T, Shao P.-L, Ye S. Adv. Synth. Catal. 2011; 353: 1943
    • 93a Chen X.-Y, Xia F, Cheng J.-T, Ye S. Angew. Chem. Int. Ed. 2013; 52: 10644

    • For related [4+2] annulations using isatins as electrophiles, see:
    • 93b Cheng J.-T, Chen X.-Y, Gao Z.-H, Ye S. Eur. J. Org. Chem. 2015; 1047

    • The same reaction can also be carried out using α-bromoenals as starting materials:
    • 93c Yao C, Xiao Z, Liu R, Li T, Jiao W, Yu C. Chem. Eur. J. 2013; 19: 456
    • 93d Xiao Z, Yu C, Li T, Wang X.-S, Yao C. Org. Lett. 2014; 16: 3632
    • 94a Zhao Y.-M, Cheung MS, Lin Z, Sun J. Angew. Chem. Int. Ed. 2012; 51: 10359

    • For a related reaction using trifluoromethyl ketones as electrophiles, see:
    • 94b Dong X, Sun J. Org. Lett. 2014; 16: 2450
    • 95a Mo J, Chen X, Chi YR. J. Am. Chem. Soc. 2012; 134: 8810

    • For related examples, see:
    • 95b Wu Z, Li F, Wang J. Angew. Chem. Int. Ed. 2015; 54: 1629
    • 95c Liu R, Yu C, Xiao Z, Li T, Wang X, Xie Y, Yao C. Org. Biomol. Chem. 2014; 12: 1885
  • 96 Chen X, Yang S, Song B.-A, Chi YR. Angew. Chem. Int. Ed. 2013; 52: 11134
  • 97 Wang M, Huang Z, Xu J, Chi YR. J. Am. Chem. Soc. 2014; 136: 1214
  • 98 Xu J, Jin Z, Chi YR. Org. Lett. 2013; 15: 5028
    • 99a Que Y, Li T, Yu C, Wang X.-S, Yao C. J. Org. Chem. 2015; 80: 3289
    • 99b Zhu L, Yu C, Li T, Wang Y, Lu Y, Wang Y, Yao C. Org. Biomol. Chem. 2016; 14: 1485
  • 100 Li BS, Wang Y, Jin Z, Zheng P, Ganguly R, Chi YR. Nat. Commun. 2015; 6: 6207
    • 101a Sun F.-G, Sun L.-H, Ye S. Adv. Synth. Catal. 2011; 353: 3134

    • For other related examples, see:
    • 101b Wang G, Chen X, Miao G, Yao W, Ma C. J. Org. Chem. 2013; 78: 6223
    • 101c Yetra SR, Bhunia A, Patra A, Mane MV, Vanka K, Biju AT. Adv. Synth. Catal. 2013; 355: 1089
    • 101d Yetra SR, Roy T, Bhunia A, Porwal D, Biju AT. J. Org. Chem. 2014; 79: 4245
    • 101e Ni Q, Xiong J, Song X, Raabe G, Enders D. Synlett 2015; 26: 1465
    • 101f Yetra SR, Kalcharla T, Kubte SS, Gonnade RG, Biju AT. Org. Lett. 2013; 15: 5202
    • 101g Xu J, Zhang W, Liu Y, Zhu S, Liu M, Hua X, Chen S, Lu T, Du D. RSC Adv. 2016; 6: 18601
    • 101h Zhang C.-L, Wang D.-L, Chen K.-Q, Ye S. Org. Biomol. Chem. 2015; 13: 11255
    • 101i Ni Q, Song X, Raabe G, Enders D. Chem. Asian J. 2014; 9: 1533
    • 102a Yang Y.-J, Zhang H.-R, Zhu S.-Y, Zhu P, Hui X.-P. Org. Lett. 2014; 16: 5048

    • See also:
    • 102b Zhang H.-R, Dong Z.-W, Yang Y.-J, Wang P.-L, Hui X.-P. Org. Lett. 2013; 15: 4750
  • 103 Mondal S, Yetra SR, Patra A, Kunte SS, Gonnade RG, Biju AT. Chem. Commun. 2014; 50: 14359
    • 104a Zeitler K. Org. Lett. 2006; 8: 637
    • 104b Mahatthananchai J, Zheng P, Bode JW. Angew. Chem. Int. Ed. 2011; 50: 1673
    • 105a Kaeobamrung J, Mahatthananchai J, Zheng P, Bode JW. J. Am. Chem. Soc. 2010; 132: 8810
    • 105b Mahatthananchai J, Kaeobamrung J, Bode JW. ACS Catal. 2012; 2: 494

    • See also:
    • 105c Zhu Z.-Q, Zheng X.-L, Jiang N.-F, Wan X, Xiao J.-C. Chem. Commun. 2011; 47: 8670
    • 105d Zhou B, Luo Z, Li Y. Chem. Eur. J. 2013; 19: 4428
  • 106 Lyngvi E, Bode JW, Schoenebeck F. Chem. Sci. 2012; 3: 2346
    • 107a Sarkar SD, Studer A. Angew. Chem. Int. Ed. 2010; 49: 9266
    • 107b Sarkar SD, Grimme S, Studer A. J. Am. Chem. Soc. 2010; 132: 1190
  • 108 Bera S, Samanta RC, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2014; 53: 9622
  • 109 Samanta RC, Maji B, Sarkar SD, Bergander K, Frohlich R, Muck-Lichtenfeld C, Mayr H, Studer A. Angew. Chem. Int. Ed. 2012; 51: 5234
  • 110 Biswas A, Sarkar SD, Tebben L, Studer A. Chem. Commun. 2012; 48: 5190
  • 111 Biswas A, Sarkar SD, Frohlich R, Studer A. Org. Lett. 2011; 13: 4966
    • 112a Rong Z.-Q, Jia M.-Q, You S.-L. Org. Lett. 2011; 13: 4080
    • 112b Yetra SR, Mondal S, Suresh E, Biju AT. Org. Lett. 2015; 17: 1417
    • 113a Hu S, Wang B, Zhang Y, Tang W, Fang M, Lu T, Du D. Org. Biomol. Chem. 2015; 13: 4661
    • 113b Xie D, Yang L, Lin Y, Zhang Z, Chen Z, Chen D, Zeng X, Zhong G. Org. Lett. 2015; 17: 2318
  • 114 Yetra SR, Mondal S, Mukherjee S, Gonnade RG, Biju AT. Angew. Chem. Int. Ed. 2016; 55: 268
  • 115 Mao J.-H, Wang Z.-T, Wang Z.-Y, Cheng Y. J. Org. Chem. 2015; 80: 6350
    • 116a Wanner B, Mahatthananchai P, Bode JW. Org. Lett. 2011; 13: 5378
    • 116b Kravina AMahatthananchai P, Bode JW. Angew. Chem. Int. Ed. 2012; 51: 9433
  • 117 Mo J, Shen L, Chi YR. Angew. Chem. Int. Ed. 2013; 52: 8588
    • 118a Cheng J, Huang Z, Chi YR. Angew. Chem. Int. Ed. 2013; 52: 8592

    • For a related version using N-hydroxybenzotriazolyl esters, see:
    • 118b Zhang Z, Zeng X, Xie D, Chen D, Ding L, Wanf A, Yang L, Zhong G. Org. Lett. 2015; 17: 5052
  • 119 Ni Q, Xiong J, Song X, Raabe G, Enders D. Chem. Commun. 2015; 51: 14628
  • 120 Chen X.-Y, Gao Z.-H, Song C.-Y, Zhang C.-L, Wang Z.-X, Ye S. Angew. Chem. Int. Ed. 2014; 53: 11611
    • 121a Candish L, Forsyth CM, Lupton DW. Angew. Chem. Int. Ed. 2013; 52: 9149

    • For preliminary studies, see:
    • 121b Candish L, Lupton DW. J. Am. Chem. Soc. 2013; 135: 58
    • 121c Ryan SJ, Candish L, Lupton DW. J. Am. Chem. Soc. 2009; 131: 14176