Subscribe to RSS
DOI: 10.1055/s-0036-1589501
Facile Approaches to 2-Deoxy-d-glucose and 2-Deoxy-α-d-glucopyranonucleosides from d-Glucal
Financial support from National Natural Science Foundation of China (21372207) is gratefully acknowledged.Publication History
Received: 20 April 2017
Accepted after revision: 24 April 2017
Publication Date:
07 June 2017 (online)
Abstract
Convenient and stereoselective methods for the preparation of 2-deoxy-d-glucose and purine 2-deoxy-α-d-glucopyranonucleosides were developed. Halogen-mediated O-glycosidation of d-glucal by bromine in MeOH followed by reductive removal of the halo group and hydrolysis of methoxy group by zinc in saturated aqueous sodium dihydrogen phosphate gave 2-deoxy-d-glucose. Treatment of 3,4,6-tri-O-acetyl-d-glucal with IBr and 2,6-dichloropurine based on haloetherification and subsequent reductive removal of iodine and deprotection allowed the isolation of purin-9-yl 2-deoxy-α-d-glucopyranonucleoside. Preparation of several purin-9-yl 2-deoxy-α-d-glucopyranoside derivatives is also reported. Their configuration was confirmed by single crystal X-ray analysis of the key intermediate 2,6-dichloro-9-(2-iodo-2-deoxy-α-d-glucopyranosyl)purine.
Key words
glucal - 2-deoxy-d-glucose - 2-deoxy-α-d-glucopyranonucleoside - halogen-mediated O-glycosidation - stereoselective synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org /10.1055/s-0036-1589501.
- Supporting Information
-
References
- 1a Sabesan S. Neira S. J. Org. Chem. 1991; 56: 5468
- 1b Yadav JS. Reddy BV. S. Bhaskar Reddy K. Satyanarayana M. Tetrahedron Lett. 2002; 43: 7009
- 2a Aft RL. Zhang FW. Gius D. Brit. J. Cancer 2002; 87: 805
- 2b Kang HT. Hwang ES. Life Sci. 2006; 78: 1392
- 3 Christopher LF. Richard WF. J. Org. Chem. 1999; 64: 1424
- 4 Danishefsky SJ. Bilodeau MT. Angew. Chem., Int. Ed. Engl. 1996; 35: 1380
- 5 Marzabadi CH. Dios A. Geer A. Franck RW. J. Org. Chem. 1998; 63: 6673
- 6a Miller JN. Pongdee R. Tetrahedron Lett. 2013; 54: 3185
- 6b Zhao J. Wei S. Ma X. Shao H. Carbohydr. Res. 2010; 345: 168
- 6c Nord LD. Dalley NK. McKernan PA. Robins RK. J. Med. Chem. 1987; 30: 1044
- 6d Gervay J. Danishefsky S. J. Org. Chem. 1991; 56: 5448
- 6e Marzabadi CH. Franck RW. Tetrahedron 2000; 56: 8385
- 7 Ciment DM. Ferrier RJ. J. Chem. Soc. C 1966; 441
- 8 Bolitt V. Mioskowski C. Lee S.-G. Falck JR. J. Org. Chem. 1990; 55: 5812
- 9 Cui X.-K. Zhong M. Meng X.-B. Li Z.-J. Carbohydr. Res. 2012; 358: 19
- 10 Durham TB. Roush WR. Org. Lett. 2003; 5: 1875
- 11 Sirion U. Purintawarrakun S. Sahakitpichan P. Saeeng R. Carbohydr. Res. 2010; 345: 2401
- 12 Liu F. Liu Y. Xu R.-G. Dai G. Zhao L.-X. Wang Y. Liu H.-M. Liu F.-W. Pannecouque C. Herdewijn P. Chemistry & Biodiversity 2015; 12: 813
- 13 Fischer E. Zach K. Sitzungsber. Kl. Preuss. Akad. Wiss. 1913; 27: 311
- 14 Forbes CL. Frank RW. J. Org. Chem. 1999; 64: 1424
- 15 Kovacs G. Toth K. Dinya Z. Somsak L. Micskei K. Tetrahedron 1999; 55: 5253
- 16 Spencer RP. Schwartz J. Tetrahedron 2000; 56: 2103
- 17 Binch H. Stangier K. Thiem J. Carbohydr. Res. 1998; 306: 409
- 18 Meyerhoefer TJ. Kershaw S. Caliendo N. Eltayeb S. Hanawa-Romero E. Bykovskaya P. Huang V. Marzabadi CH. De Castro M. Eur. J. Org. Chem. 2015; 2457
For example: