Synthesis, Table of Contents Synthesis 2017; 49(11): 2470-2482DOI: 10.1055/s-0036-1590112 paper © Georg Thieme Verlag Stuttgart · New York Tethered NHC Ligands for Stereoselective Alkyne Semihydrogenations Felix Pape Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany Email: johannes.teichert@chem.tu-berlin.de , Johannes F. Teichert* Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany Email: johannes.teichert@chem.tu-berlin.de › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract A copper(I)-catalyzed semihydrogenation of internal alkynes has been developed. A variety of oxygen- and nitrogen-tethered N-heterocyclic carbene (NHC) complexes have been investigated, leading to a highly Z-selective transformation. The catalyst is generated from inexpensive copper(I) chloride in situ and allows catalytic semihydrogenation down to 10 bar H2. Key words Key wordsalkynes - dihydrogen - copper - stereoselectivity - hydrogenation - NHC ligands Full Text References References 1a Noyori R. Chem. Commun. 2005; 1807-1807 1b Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JJ. L, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411-411 1c Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301-301 2 Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318-8318 3 Deutsch C, Krause N, Lipshutz BH. Chem. Rev. 2008; 108: 2916-2916 4 Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2007; 46: 498-498 5 Lipshutz BH. In Modern Organocopper Chemistry . Krause N. Wiley-VCH; Weinheim: 2002: 167-187 For early studies on H2 activation with copper(I) hydride compounds, see: 6a Mahoney WS, Stryker JM. J. Am. Chem. Soc. 1989; 111: 8818-8818 6b Chen JX, Daeuble JF, Brestensky DM, Stryker JF. Tetrahedron 2000; 56: 2153-2153 6c Chen JX, Daeuble JF, Stryker JM. Tetrahedron 2000; 56: 2789-2789 For copper(I)-catalyzed carbonyl hydrogenation, see: 7a Shimizu H, Igarashi D, Kuriyama W, Yusa Y, Sayo N, Saito T. Org. Lett. 2007; 9: 1655-1655 7b Shimizu H, Sayo N, Saito T. Synlett 2009; 1295-1295 7c Shimizu H, Nagano T, Sayo N, Saito T, Ohshima T, Mashima K. Synlett 2009; 3143-3143 7d Junge K, Wendt B, Addis D, Zhou S, Das S, Fleischer S, Beller M. Chem. Eur. J. 2011; 17: 101-101 7e Krabbe SW, Hatcher MA, Bowman RK, Mitchell MB, McClure MS, Johnson JS. Org. Lett. 2013; 15: 4560-4560 7f Watari R, Kayaki Y, Hirano S.-i, Matsumoto N, Ikariya T. Adv. Synth. Catal. 2015; 357: 1369-1369 8 For a review on the related alkyne semihydrogeation with hetereogeneous palladium catalysts, see: Molnar A, Sarkany A, Varga M. J. Mol. Catal. A: Chem. 2001; 173: 185-185 9 Semba K, Kameyama R, Nakao Y. Synlett 2015; 26: 318-318 10 Pape F, Thiel NO, Teichert JF. Chem. Eur. J. 2015; 21: 15934-15934 11 Wakamatsu T, Nagao K, Ohmiya H, Sawamura M. Organometallics 2016; 35: 1354-1354 12 Thiel NO, Teichert JF. Org. Biomol. Chem. 2016; 14: 10660-10660 13 For a report on copper(I)-catalyzed alkyne semihydrogenation employing hypophosphorous acid as stroichiometric reductant, see: Cao H, Chen T, Zhou Y, Han D, Yin S.-F, Han L.-B. Adv. Synth. Catal. 2014; 356: 765-765 For formal alkyne semihydrogenations with stoichiometric copper hydride complexes, see: 14a Daeuble JF, McGettigan C, Stryker JM. Tetrahedron Lett. 1990; 31: 2397-2397 For formal alkyne semihydrogenations with hydrosilanes and proton sources, see: 14b Semba K, Fujihara T, Xu T, Terao J, Tsuji Y. Adv. Synth. Catal. 2012; 354: 1542-1542 14c Whittaker AM, Lalic G. Org. Lett. 2013; 15: 1112-1112 14d Cox N, Dang H, Whittaker AM, Lalic G. Tetrahedron 2014; 70: 4219-4219 14e Wang G.-H, Bin H.-Y, Sun M, Chen S.-W, Liu J.-H, Zhong C.-M. Tetrahedron 2014; 70: 2175-2175 For a report on stereoselective alkyne semihydrogenation with copper nanoparticles, see: 14f Fedorov A, Liu H.-J, Lo H.-K, Copéret C. J. Am. Chem. Soc. 2016; 138: 16502-16502 15 For alkyne transfer semihydrogenation with copper(I) catalysts, see: Korytiaková E, Thiel NO, Pape F, Teichert JF. Chem. Commun. 2017; 53: 26-26 16 Goeden GV, Caulton KG. J. Am. Chem. Soc. 1981; 103: 7354-7354 17a Tsuda T, Yazawa T, Watanabe K, Fujii T, Saegusa T. J. Org. Chem. 1981; 46: 192-192 For a review on mesitylcopper(I), see: 17b Stollenz M, Meyer F. Organometallics 2012; 31: 7708-7708 18 For further optimization data and control reactions regarding the role of the NHC ligand, see the Supporting Information. 19a Martin D, Kehrli S, d’Augustin M, Clavier H, Mauduit M, Alexakis A. J. Am. Chem. Soc. 2006; 128: 8416-8416 19b Kehrli S, Martin D, Rix D, Mauduit M, Alexakis A. Chem. Eur. J. 2010; 16: 9890-9890 19c Jahier-Diallo C, Morin MS. T, Queval P, Rouen M, Artur I, Querard P, Toupet L, Crévisy C, Baslé O, Mauduit M. Chem. Eur. J. 2015; 21: 993-993 20 Clavier H, Coutable L, Toupet L, Guillemin J.-C, Mauduit M. J. Organomet. Chem. 2005; 690: 5237-5237 21 For an early study on homogeneous hydrogenation with copper(II) acetate in quinoline as solvent (implying a crucial Cu–N bond), see: Calvin M, Polanyi M. Trans. Faraday Soc. 1938; 34: 1181-1181 22a For a recent study of copper(I)–triazole complexes in hydrosilane activation, see: Trose M, Lazreg F, Chang T, Nahra F, Cordes DB, Slawin AM. Z, Cazin CS. J. ACS Catal. 2016; 6: 238-238 22b Of the complexes described in reference 22a, [Cu(μ-trz)NHC]2 with NHC = IPr, IMes and SIMes, did not show any alkyne semihydrogenation of tolane (4) and 6-dodecyne (10k) in THF at 100 bar H2 and 60 °C. 23 Goj LA, Blue ED, Delp SA, Gunnoe TB, Cundari TR, Pierpoint AW, Petersen JL, Boyle PD. Inorg. Chem. 2006; 45: 9032-9032 24 CCDC 1523593 contains the supplementary crystallographic data for 5t. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. 25 A similar rearrangement has been reported: Despagnet-Ayoub E, Henling LM, Labinger JA, Bercaw JE. Organometallics 2013; 32: 2934-2934 26a Jordan AJ, Wyss CM, Bacsa J, Sadighi JP. Organometallics 2016; 35: 613-613 26b Mankad NP, Laitar DS, Sadighi JP. Organometallics 2004; 23: 3369-3369 27 So far, mechanistic investigations by NMR spectroscopy and mass spectrometry have not delivered any conclusive evidence of reactive intermediates involved in the catalysis. These measurements have been partly hampered by the relatively high H2 pressures needed. 28 Waltman AW, Grubbs RH. Organometallics 2004; 23: 3105-3105 29 Arnold PL, Casely IJ, Turner ZR, Carmichael CD. Chem. Eur. J. 2008; 14: 10415-10415 30 Paczal A, Benyei AC, Kotschy A. J. Org. Chem. 2006; 71: 5969-5969 31 Lohre C, Droge T, Wang C, Glorius F. Chem. Eur. J. 2011; 17: 6052-6052 32a Kulagowski JJ, Rees CW. Synthesis 1980; 215-215 32b Chan A, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 5334-5334 33 Bonnat M, Hercouet A, Le Corre M. Synth. Commun. 1991; 21: 1579-1579 34 Dubowchik GM, Han X, Vrudhula VM, Zuev D, Dasgupta B, Michne JA. Patent WO02058704 (A1), 2002 35 van den Branden S, Compernolle F, Hoornaert GJ. J. Chem. Soc., Perkin Trans. 1 1992; 1035-1035 36 Bessel M, Rominger F, Straub B. Synthesis 2010; 1459-1459 37 Lal AK, Milton MD. Tetrahedron Lett. 2014; 55: 1810-1810 38 Fu R, Yang Y, Ma Y, Yang F, Li J, Chai W, Wang Q, Yuan R. Tetrahedron Lett. 2015; 56: 4527-4527 39 Peng X, Zhu Y, Ramirez TA, Zhao B, Shi Y. Org. Lett. 2011; 13: 5244-5244 40 Jones RC, Nichols JR. Tetrahedron 2013; 69: 4114-4114 41 Clavier H, Guillemin J.-C, Mauduit M. Chirality 2007; 19: 471-471 42 Uenishi J, Aburatani S, Takami T. J. Org. Chem. 2007; 72: 132-132 43 Semba K, Fujihara T, Terao J, Tsuji Y. Chem. Eur. J. 2012; 18: 4179-4179 Supplementary Material Supplementary Material Supporting Information