Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2017; 49(13): 2865-2872
DOI: 10.1055/s-0036-1590503
DOI: 10.1055/s-0036-1590503
feature
Copper-Mediated sp 2 C–H Chlorination with Trichloroacetamide Using a Removable Directing Group
Further Information
Publication History
Received: 05 May 2017
Accepted: 08 May 2017
Publication Date:
15 May 2017 (online)

Dedicated to Prof. David R. Williams at Indiana University
Abstract
2-Aminophenyl-1H-pyrazole was discovered as a removable, bidentate directing group for copper-mediated aerobic oxidative sp 2 C–H bond chlorination employing trichloroacetamide as a new chlorine source. When Cu(OAc)2 was employed as the copper source, 1,1,3,3-tetramethylguanidine (TMG) as an organic base, the reaction, optimally carried out overnight in DMSO at 80 °C in open air, produced a variety of mono- and dichlorinated products in moderate to excellent yields. This directing group can be removed oxidatively with cerium ammonium nitrate (CAN).
Key words
C–H chlorination - copper-mediated - trichloroacetamide - removable directing group - 2-aminophenyl-1H-pyrazoleSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1590503.
- Supporting Information
-
References
- 1 Oshiro Y. Sato S. Kurahashi N. Tanaka T. Kikuchi T. Tottori K. Uwahodo Y. Nishi T. J. Med. Chem. 1998; 41: 658
- 2 Carini DJ. Duncia JV. Aldrich PE. Chiu AT. Johnson AL. Pierce ME. Price 3rd WA. Santella JB. Wells GJ. Wexler RR. Wong PC. Yoo S.-E. Timmermans PB. J. Med. Chem. 1991; 34: 2525
- 3 Lee W.-CC. Shen Y. Gutierrez DA. Li JJ. Org. Lett. 2016; 18: 2660
- 4a Das B. Chowdhury N. Damodar K. Ravikanth B. Helv. Chim. Acta 2007; 90: 2037
- 4b Bluempaunupat W. Chantarasriwong O. Taboonpong P. Jang DO. Chavasiru W. Tetrahedron Lett. 2007; 48: 223
- 4c Bluempaunupat W. Chavasiru W. Tetrahedron Lett. 2006; 47: 6821
- 5a Dick AR. Hull KL. Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
- 5b Bedford RB. Haddow MF. Mitchell CJ. Webster RL. Angew. Chem. Int. Ed. 2011; 50: 5524
- 5c Rit RK. Yadav R. Ghosh K. Shankar M. Sahoo AK. Org. Lett. 2014; 16: 5258
- 5d Zhang G. Sun S. Yang F. Zhang Q. Kang J. Wu Y. Wu Y. Adv. Synth. Catal. 2015; 357: 450
- 5e Guo H. Chen M. Jiang P. Chen J. Pan L. Wang M. Xie C. Zhang Y. Tetrahedron 2015; 71: 70
- 5f Testa C. Gigot É. Genc S. Decréau R. Roger J. Hierso J.-C. Angew. Chem. Int. Ed. 2016; 55: 5555
- 5g Moghaddam FM. Tavakoli G. Saeednia B. Langer P. Jafari B. J. Org. Chem. 2016; 81: 3868
- 6a Ahmad NM. Copper-Mediated C–H Activation . In C–H Bond Activation in Organic Synthesis . Li JJ. CRC; Boca Raton, FL: 2015: 175-215
- 6b Cai X.-H. Xie B. Synthesis 2015; 47: 737
- 6c Evano G. Blanchard N. Copper-Mediated Cross-Coupling Reactions . Wiley; Hoboken, NJ: 2013
- 6d Hao W. Liu Y. Beilstein J. Org. Chem. 2015; 11: 2132
- 7a Chen X. Hao X.-S. Goodhue CE. Yu JQ. J. Am. Chem. Soc. 2006; 128: 6790
- 7b Menini L. da Cruz Santos JC. Gusevskayaa EV. Adv. Synth. Catal. 2008; 350: 2052
- 7c Lu Y. Wang R. Qiao X. Shen Z. Synlett 2011; 1038
- 7d Mo S. Zhu YM. Shen ZM. Org. Biomol. Chem. 2013; 11: 2756
- 7e Suess AM. Ertem MZ. Cramer CJ. Stahl SS. J. Am. Chem. Soc. 2013; 135: 9797
- 7f Zhao J. Cheng X. Le J. Yang W. Xue F. Zhang X. Jiang C. Org. Biomol. Chem. 2015; 13: 9000
- 7g Guo H. Chen M. Jiang P. Chen J. Pan L. Wang M. Xie C. Zhang Y. Tetrahedron 2015; 71: 70
- 8a Wang WH. Pan CD. Chen F. Cheng J. Chem. Commun. 2011; 47: 3978
- 8b Urones B. Martínez ÁM. Rodríguez N. Carretero JC. Chem. Commun. 2013; 49: 11044
- 8c Du Z.-J. Gao L.-X. Lin Y.-J. Han F.-S. ChemCatChem 2014; 6: 123
- 8d Du Z.-J. Gao L.-X. Shi B.-F. Chem. Commun. 2015; 51: 5093
- 9 Lapointe D. Fagnou K. Chem. Lett. 2010; 39: 1118
- 10a Shang M. Sun S.-Z. Dai H.-X. Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 3354
- 10b Talbot EP. A. Fernandes T. deA. McKenna JM. Toste FD. J. Am. Chem. Soc. 2014; 136: 4101
- 11a Truong T. Klimovica K. Daugulis O. J. Am. Chem. Soc. 2013; 135: 9342
- 11b Shabashov D. Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
- 12 Gui Q. Chen X. Hu L. Wang D. Liu J. Tan Z. Adv. Synth. Catal. 2016; 358: 509
- 13 Shang M. Wang H.-L. Sun S.-Z. Dai H.-X. Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 11590
- 14 He G. Zhang S.-Y. Nack WA. Li Q. Chen G. Angew. Chem. Int. Ed. 2013; 52: 11330
- 15 Shang M. Sun S.-Z. Dai H.-X. Yu J.-Q. Org. Lett. 2014; 16: 5666
- 16 Berger M. Chauhan R. Rodrigues CA. B. Maulide M. Chem. Eur. J. 2016; 22: 16805
- 17a Yang LJ. Lu Z. Stahl SS. Chem. Commun. 2009; 6460
- 17b King AE. Huffman LM. Casitas A. Costas M. Ribas X. Stahl SS. J. Am. Chem. Soc. 2010; 132: 12068
- 18 See reference 3 for cost calculation and comparison.
A combination of PPh3/CCl3CONH2 was employed to chlorinate alcohols by converting C–OH bonds to C–Cl bonds:
Palladium-catalyzed C–H chlorination:
Reviews on copper-mediated C–H bond activation:
Copper-mediated nucleophilic C–H chlorination:
Copper-mediated electrophilic C–H chlorination: