Synthesis 2017; 49(19): 4489-4499
DOI: 10.1055/s-0036-1590824
paper
© Georg Thieme Verlag Stuttgart · New York

meta- and para-Functionalized Thermally Crosslinkable OLED-Materials through Selective Transition-Metal-Catalyzed Cross-Coupling Reactions

Matthias Hempe
Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany   Email: re@chemie.tu-darmstadt.de
,
Lutz Schnellbächer
Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany   Email: re@chemie.tu-darmstadt.de
,
Tobias Wiesner
Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany   Email: re@chemie.tu-darmstadt.de
,
Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany   Email: re@chemie.tu-darmstadt.de
› Author Affiliations
Further Information

Publication History

Received: 03 April 2017

Accepted after revision: 06 June 2017

Publication Date:
26 July 2017 (online)


Abstract

Herein, a synthetic approach using selective transition-metal-catalyzed cross-coupling reactions to thermally crosslinkable OLED materials­ based on vinyl-functionalized arylamines is reported. In a modular approach, 9,9-dialkyl-2,7-diiodo-9H-fluorene underwent a selective Ullmann cross-coupling reaction with bromo-substituted-diphenylamines to give 9,9-dialkyl-2,7-bis(bromo-substituted-diphenylamino)-9H-fluorenes that underwent end-functionalization by the Suzuki–Miyaura reaction using potassium vinyltrifluoroborate to give the corresponding 9,9-dialkyl-2,7-bis(vinyl-substituted-diphenylamino)-9H-fluorenes. Novel meta-functionalized materials were synthesized, which are difficult to prepare by traditional synthetic pathways. The thermal behavior of the compounds was investigated by DSC measurements, indicating a lower thermal sensitivity of the meta-substituted materials than their para-functionalized analogues.

Supporting Information

 
  • References

  • 1 Lim B. Hwang J.-T. Kim JY. Ghim J. Vak D. Noh Y.-Y. Lee S.-H. Lee K. Heeger AJ. Kim D.-Y. Org. Lett. 2006; 8: 4703
  • 2 Ma B. Lauterwasser F. Deng L. Zonte CS. Kim BJ. Fréchet JM. J. Borek C. Thompson ME. Chem. Mater. 2007; 19: 4827
  • 3 Zhang Y.-D. Hreha RD. Jabbour GE. Kippelen B. Peyghambarian N. Marder SR. J. Mater. Chem. 2002; 12: 1703
  • 4 Bacher A. Erdelen CH. Paulus W. Ringsdorf H. Schmidt H.-W. Schuhmacher P. Macromolecules 1999; 32: 4551
  • 5 Derue L. Dautel O. Tournebize A. Drees M. Pan H. Berthumeyrie S. Pavageau B. Cloutet E. Chambon S. Hirsch L. Rivaton A. Hudhomme P. Facchetti A. Wantz G. Adv. Mater. (Weinheim, Ger.) 2014; 26: 5831
  • 6 Nam C.-Y. Qin Y. Park YS. Hlaing H. Lu X. Ocko BM. Black CT. Grubbs RB. Macromolecules 2012; 45: 2338
  • 7 Volz D. Baumann T. Flugge H. Mydlak M. Grab T. Bachle M. Barner-Kowollik C. Brase S. J. Mater. Chem. 2012; 22: 20786
  • 8 Muller CD. Falcou A. Reckefuss N. Rojahn M. Wiederhirn V. Rudati P. Frohne H. Nuyken O. Becker H. Meerholz K. Nature (London) 2003; 421: 829
  • 9 Köhnen A. Riegel N. Kremer JH. W. M. Lademann H. Müller DC. Meerholz K. Adv. Mater. (Weinheim, Ger.) 2009; 21: 879
  • 10 Liaptsis G. Hertel D. Meerholz K. Angew. Chem. Int. Ed. 2013; 52: 9563
  • 11 Klärner G. Lee JI. Lee VY. Chan E. Chen JP. Nelson A. Markiewicz D. Siemens R. Scott JC. Miller RD. Chem. Mater. 1999; 11: 1800
  • 12 Bozano LD. Carter KR. Lee VY. Miller RD. DiPietro R. Scott JC. J. Appl. Phys. 2003; 94: 3061
  • 13 Ameen S. Lee J. Han H. Suh MC. Lee C. RSC Adv. 2016; 6: 33212
  • 14 Cheng Y.-J. Liu MS. Zhang Y. Niu Y. Huang F. Ka J.-W. Yip H.-L. Tian Y. Jen AK. Y. Chem. Mater. 2008; 20: 413
  • 15 Ma B. Kim BJ. Poulsen DA. Pastine SJ. Fréchet JM. J. Adv. Funct. Mater. 2009; 19: 1024
  • 16 Paul GK. Mwaura J. Argun AA. Taranekar P. Reynolds JR. Macromolecules 2006; 39: 7789
  • 17 Cheng Y.-J. Liao M.-H. Shih H.-M. Shih P.-I. Hsu C.-S. Macromolecules 2011; 44: 5968
  • 18 Fang B. Jin M. Wu X. Zhang Y. Wan D. Dyes Pigm. 2016; 126: 54
  • 19 Darses S. Michaud G. Genêt J.-P. Eur. J. Org. Chem. 1999; 1875
  • 20 Molander GA. Brown AR. J. Org. Chem. 2006; 71: 9681
  • 21 Lee SH. Nakamura T. Tsutsui T. Org. Lett. 2001; 3: 2005
  • 22 Cerrada E. Laguna M. Lardíes N. Eur. J. Inorg. Chem. 2009; 137
  • 23 Kranenburg M. van der Burgt YE. M. Kamer PC. J. van Leeuwen PW. N. M. Goubitz K. Fraanje J. Organometallics 1995; 14: 3081
  • 24 Kranenburg M. Kamer PC. J. van Leeuwen PW. N. M. Eur. J. Inorg. Chem. 1998; 155
  • 25 Ishow E. Brosseau A. Clavier G. Nakatani K. Pansu RB. Vachon J.-J. Tauc P. Chauvat D. Mendonça CR. Piovesan E. J. Am. Chem. Soc. 2007; 129: 8970
  • 26 Chong YK. Rizzardo E. Solomon DH. J. Am. Chem. Soc. 1983; 105: 7761
  • 27 Mayo FR. J. Am. Chem. Soc. 1968; 90: 1289
  • 28 Khuong KS. Jones WH. Pryor WA. Houk KN. J. Am. Chem. Soc. 2005; 127: 1265
  • 29 Fulmer GR. Miller AJ. M. Sherden NH. Gottlieb HE. Nudelman A. Stoltz BM. Bercaw JE. Goldberg KI. Organometallics 2010; 29: 2176
  • 30 Lardies N. Romeo I. Cerrada E. Laguna M. Skabara PJ. Dalton Trans. 2007; 5329
  • 31 West K. Wang C. Batsanov AS. Bryce MR. Org. Biomol. Chem. 2008; 6: 1934
  • 32 Budén ME. Vaillard VA. Martin SE. Rossi RA. J. Org. Chem. 2009; 74: 4490
  • 33 Jadhav RR. Huddar SN. Akamanchi KG. Eur. J. Org. Chem. 2013; 6779