Synlett, Inhaltsverzeichnis Synlett 2017; 28(20): 2928-2932DOI: 10.1055/s-0036-1590858 letter © Georg Thieme Verlag Stuttgart · New York Synthesis of (–)-Muricatacin and (–)-(R,R)-L-Factor Involving an Organocatalytic Direct Vinylogous Aldol Reaction Christopher Cooze Department of Chemistry, Memorial University, St. John’s, Newfoundland, A1B 3X7, Canada eMail: spansare@mun.ca , Amarender Manchoju Department of Chemistry, Memorial University, St. John’s, Newfoundland, A1B 3X7, Canada eMail: spansare@mun.ca , Sunil V. Pansare* Department of Chemistry, Memorial University, St. John’s, Newfoundland, A1B 3X7, Canada eMail: spansare@mun.ca › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Dedicated to Professor Victor Snieckus on the occasion of his 80th birthday Abstract Concise syntheses of the polyketide natural product (–)-muricatacin and (–)-(R,R)-L-factor (natural product enantiomer) were achieved in four steps by employing an organocatalytic asymmetric direct vinylogous aldol reaction of γ-crotonolactone and suitable aliphatic aldehydes as the key step. Key words Key wordsmuricatacin - L-factor - direct vinylogous aldol - organocatalysis Volltext Referenzen References and Notes 1 Rieser MJ. Kozlowski JF. Wood KV. McLaughlin JL. Tetrahedron Lett. 1991; 32: 1137 2a Smith CJ. Abbanat D. Bernon VS. Maiese WM. Greenstein M. Jompa J. Tahir A. Ireland CM. J. Nat. Prod. 2000; 63: 142 2b Gesner S. Cohen N. Ilan M. Yarden O. Carmeli S. J. Nat. Prod. 2005; 68: 1350 3 Grafe U. Reinhardt G. Schade W. Krebs D. Eritt I. Fleck WF. Heinrich E. Radics L. J. Antibiot. 1982; 609 4 Sy AA. Swenson DC. Gloer JB. Wicklow DT. J. Nat. Prod. 2008; 71: 415 5 Sinha SC. Sinha SC. Keinan E. J. Org. Chem. 1999; 64: 7067 6 Yoshimitsu T. Makino T. Nagaoka H. J. Org. Chem. 2004; 69: 1993 7 Konno H. Makabe H. Hattori Y. Nosaka K. Akaji K. Tetrahedron 2010; 66: 7946 8a Chaudhari DA. Ingle AB. Fernandes RA. Tetrahedron: Asymmetry 2016; 27: 114 8b Raji Reddy C. Suman D. Narsimha Rao N. Helv. Chim. Acta 2015; 98: 967 8c Chatterjee S. Manna A. Bhaumik T. Tetrahedron: Asymmetry 2014; 25: 1624 8d Doran R. Guiry PJ. Synthesis 2014; 46: 761 8e Dong H.-B. Yang M.-Y. Liu B. Wang M.-A. J. Asian Nat. Prod. Res. 2014; 16: 847 8f Gonzalez M. Gandara Z. Martinez A. Gomez G. Fall Y. Synthesis 2013; 45: 1693 8g Gonzalez M. Gandara Z. Pazos G. Gomez G. Fall Y. Synthesis 2013; 45: 625 8h Sabitha G. Chandrashekhar G. Reddy DV. Yadav JS. Lett. Org. Chem. 2012; 9: 344 8i Sreco B. Benedekovic G. Popsavin M. Hadzic P. Kojic V. Bogdanovic G. Divjakovic V. Popsavin V. Tetrahedron 2011; 67: 9358 8j Gonzalez M. Gandara Z. Covelo B. Gomez G. Fall Y. Tetrahedron Lett. 2011; 52: 5983 8k Srinivas C. Kumar CN. S. S. P. Raju BC. Rao VJ. Helv. Chim. Acta 2011; 94: 669 8l Yaragorla S. Muthyala R. ARKIVOC 2010; (x): 178 8m Ghosal P. Kumar V. Shaw AK. Carbohyd. Res. 2010; 345: 41 8n Takahashi S. Hongo Y. Ogawa N. Koshino H. Nakata T. J. Org. Chem. 2006; 71: 6305 8o Ahmed MM. Cui H. O’Doherty GA. J. Org. Chem. 2006; 71: 6686 For a review on the synthesis and the biological activity of muricatacin and related γ-butanolides, prior to 2010, see: 8p Murcia MC. Navarro C. Moreno A. Csákÿ AG. Curr. Org. Chem. 2010; 14: 15 Selected syntheses: 9a Fujisawa T. Kojima E. Ito T. Sato T. Chem. Lett. 1985; 1751 9b Larchevêque M. Lalande J. J. Chem. Soc., Chem. Commun. 1985; 83 9c Sato F. Kobayashi Y. Takahashi O. Chiba T. Takeda Y. Kusakabe M. J. Chem. Soc., Chem. Commun. 1985; 1636 9d Kotsuki H. Kadota I. Ochi M. J. Org. Chem. 1990; 55: 4417 9e Fadnavis NW. Vadivel SK. Sharfuddin M. Tetrahedron: Asymmetry 1999; 10: 3675 9f Stamatatos L. Sinay P. Pougny JP. Tetrahedron 1984; 40: 1713 9g Rao AV. R. Bose D. Gurjar MK. Ravindranathan T. Tetrahedron 1989; 45: 7031 ; also see ref. 8a,b 10 Doran R. Guiry PJ. Synthesis 2014; 46: 761 11 Andrés JM. de Elena N. Pedrosa R. Pérez-Encabo A. Tetrahedron: Asymmetry 2001; 12: 1503 ; and references cited therein 12 Pichon M. Jullian J.-C. Figadère B. Cavé A. Tetrahedron Lett. 1998; 39: 1755 ; and references cited therein 13 Rassu G. Pinna L. Spanu P. Zanardi F. Battistini L. Casiraghi G. J. Org. Chem. 1997; 62: 4513 14 Srećo B. Benedeković G. Popsavin M. Hadžić P. Kojić V. Bogdanović G. Divjaković V. Popsavin V. Tetrahedron 2011; 67: 9358 15a Evans DA. Kvaerno L. Dunn TB. Beauchemin A. Raymer B. Mulder JA. Olhava EJ. Juhl M. Kagechika K. Favor DA. J. Am. Chem. Soc. 2008; 130: 16295 15b Szlosek M. Franck X. Figadère B. Cave A. J. Org. Chem. 1998; 63: 5169 15c Szlosek M. Jullian J.-C. Hocquemiller R. Figadère B. Heterocycles 2000; 52: 1005 15d Szlosek M. Figadère B. Angew. Chem. Int. Ed. 2000; 39: 1799 15e Szlosek M. Peyrat JF. Chaboche C. Franck X. Hocquemiller R. Figadère B. New J. Chem. 2000; 24: 337 15f Bella M. Piancatelli G. Squarcia A. Tetrahedron 2001; 57: 4429 Organocatalytic vinylogous aldol reactions of unsubstituted γ-crotonolactone: 16a Sakai T. Hirashima S. Yamashita Y. Arai R. Nakashima K. Yoshida A. Koseki Y. Miura T. J. Org. Chem. 2017; 82: 4661 16b Claraz A. Oudeyer S. Levacher V. Adv. Synth. Catal. 2013; 355: 841 16c Pansare SV. Paul EK. Chem. Commun. 2011; 47: 1027 16d Yang Y. Zheng K. Zhao J. Shi J. Lin L. Liu X. Feng X. J. Org. Chem. 2010; 75: 5382 Organocatalytic vinylogous aldol reactions of substituted γ-crotonolactones: 16e Ube H. Shimada N. Terada M. Angew. Chem. Int. Ed. 2010; 49: 1858 17 See the Supporting Information for the solvent optimization studies with catalysts (R,R)-6 and 13. 18 Of the diastereomers of 16 and 17, the specific rotation of only syn-16 is reported in the literature.8o In our studies, the separation of syn-16 and anti-16 by chromatography proved to be extremely difficult and diastereomerically pure syn-16 could not be obtained. Hence, the absolute configuration of the lactone stereocenter in 16 was assigned on the basis of our previous studies with aromatic aldehydes.16c The syn and anti diastereomers in 16 and 17 were assigned by comparison of the trend in chemical shift of their methine hydrogens with that reported for 16.15d These assignments were subsequently confirmed by the conversion of syn-16 into 1 and syn-17 into 3. 19 Cavé A. Chaboche C. Figadère B. Harmange JC. Laurens A. Peyrat JF. Pichon M. Szlosek M. Cotte-Lafitte J. Quéro AM. Eur. J. Med. Chem. 1997; 32: 617 20 Anh NY. Top. Curr. Chem. 1980; 88: 145 21 General Procedure for the Reduction of 20 and 21 To a solution of the ketone (1 equiv) in dry THF was added K-Selectride (1.5 equiv, 1 M in THF) at –78 °C, and the mixture was stirred at –78 °C for 1 h. Saturated NH4Cl (5 mL) was added at –78 °C, and the mixture was warmed to r.t. The mixture was then extracted with EtOAc (3 × 5 mL), and the combined extracts were dried (Na2SO4) and concentrated. The crude product was purified by flash chromatography on silica gel. (R)-5-[(R)-1-Hydroxytridecyl]dihydrofuran-2(3H)-one – (–)-Muricatacin (1) The reaction of ketone 20 (50 mg, 0.18 mmol) and K-Selectride (0.27 mL, 0.27 mmol, 1.0 M in THF) in dry THF (1 mL) for 30 min according to the general procedure provided, after purification by flash chromatography on silica gel (CH2Cl2/EtOAc, 9:1), 37 mg (74%) of 1 as a white solid. Rf = 0.30 (CH2Cl2/EtOAc, 9:1); [α]D 23–18.6 (c 1.77, CH2Cl2), mp 65.5–69.1 °C; lit.8a [α]D 23–17.5 (c 1.0, CH2Cl2), mp 66–68 °C; lit.8o [α]D 23–19 (c 1.8, CH2Cl2), mp 68–70 °C. IR (neat): 3415(br), 2957, 2916, 2847, 1761, 1471, 1462, 1267, 1189, 1331, 1104, 1082, 1011 cm–1. 1H NMR (300 MHz, CDCl3): δ = 4.42 (td, 1 H, J = 7.3, 4.6 Hz, OCH), 3.58 (quint, 1 H, J = 5.3 Hz, CHOH), 2.69–2.46 (m, 2 H, CH2), 2.33–2.04 (m, 2 H, CH2), 1.95–1.85 [br m, 1 H, OH (D2O exchange)], 1.64–1.20 (m, 22 H, CH2), 0.88 (t, 3 H, J = 6.6 Hz, CH3). 13C NMR (75 MHz, CDCl3): δ = 177.2 (C(O)O), 83.0 (OCH), 73.7 (CHOH), 33.0 (CH2), 31.9 (CH2), 29.7 (CH2), 29.64 (2 × CH2), 29.58 (CH2), 29.51 (CH2), 29.50 (CH2), 29.4 (CH2), 28.7 (CH2), 25.5 (CH2), 24.1 (CH2), 22.7 (CH2), 14.1 (CH3). HRMS (ESI, pos): m/z calcd for C17H32O3 [M]+: 284.2351; found: 284.2340; m/z calcd for C17H33O3 [M + Na]+: 307.2249; found: 307.2232. (R)-5-[(R)-1-Hydroxyhexyl]dihydrofuran-2(3H)-one – (–)-L-Factor (3) The reaction of ketone 21 (60 mg, 0.33 mmol) and K-Selectride (0.48 mL, 0.49 mmol) in dry THF (2 mL) for 1 h according to the general procedure provided, after purification by flash chromatography on silica gel (CH2Cl2/EtOAc, 9:1), 48 mg (78%) of 3 as a white solid. Rf = 0.22 (CH2Cl2/EtOAc, 4:1); [α]D 23 –29.3 (c 1.27, CHCl3), mp 41–43 °C; lit.8a [α]D 25–27.1 (c 0.6, CHCl3), mp 42–44 °C; lit.8b [α]D 23 –32.8 (c 1.54, CHCl3), mp 45–48 °C. IR: 3450 (br), 2954, 2928, 2858, 1765, 1185, 1133, 1075, 1057, 1023, 992, 929, 907 cm–1. 1H NMR (300 MHz, CDCl3): δ = 4.42 (td, 1 H, J = 7.3, 4.4 Hz, OCH), 3.62–3.52 (br m, 1 H, CHOH), 2.69–2.46 (m, 2 H, CH2), 2.32–2.01 [m, 3 H, CH2, OH (D2O exchange)], 1.62–1.21 (m, 8 H, CH2), 0.89 (t, 3 H, J = 6.7 Hz, CH3). 13C NMR (75 MHz, CDCl3): δ = 177.3 (C(O)O), 83.0 (OCH), 73.6 (CHOH), 32.9 (CH2), 31.7 (CH2), 28.7 (CH2), 25.1 (CH2), 24.1 (CH2), 22.5 (CH2), 14.0 (CH3). HRMS (APPI, pos): m/z calcd for C10H18O3 [M]+: 186.1256; found: 186.1252; m/z calcd for C10H19O3 [M + H]+: 187.1334; found: 187.1325. Zusatzmaterial Zusatzmaterial Supporting Information