Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(20): 2941-2945
DOI: 10.1055/s-0036-1590875
DOI: 10.1055/s-0036-1590875
letter
Oxidative Biaryl Coupling of N-Aryl Anilines by Using a Hypervalent Iodine(III) Reagent
This work was partially supported by Grants-in-Aid for Scientific Research (A) from the Japan Society for the Promotion of Science (JSPS), a Grant-in-Aid for Scientific Research on Innovative Areas ‘Advanced Molecular Transformation by Organocatalysts’ from The Ministry of Education, Culture, Sports, Science and Technology (MEXT), and the Ritsumeikan Global Innovation Research Organization (R-GIRO) project. T.D. acknowledges a Grant-in-Aid for Scientific Research (C) from JSPS and the Asahi Glass Foundation. K.M. also acknowledges support from a Grant-in-Aid for Scientific Research (C) from the JSPSFurther Information
Publication History
Received: 16 June 2017
Accepted after revision: 20 July 2017
Publication Date:
26 October 2017 (online)
Dedicated to Victor Snieckus in honor of his 80th birthday
Abstract
Biaryl diamines are important building blocks in organic synthesis. Consequently, it is desirable to develop a general and mild synthetic approach to diverse biaryl diamines. Oxidative coupling is an efficient and promising strategy for the synthesis of these targets. We have now developed a direct formation of biaryl diamines by oxidative coupling using a hypervalent iodine(III) reagent.
-
References and Notes
- 1a Ohkuma T. Kitamura M. Noyori R. In Catalytic Asymmetric Synthesis . 2nd ed., Ojima I. Wiley-VCH; Weinheim: 2000
- 1b Berkessel A. Gröger H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis. Wiley-VCH; Weinheim: 2005
- 2a McGlacken GP. Bateman LM. Chem. Soc. Rev. 2009; 38: 2447
- 2b Sun C.-L. Shi Z.-J. Chem. Rev. 2014; 114: 9219
- 3a Naylor FT. Saunders BC. J. Chem. Soc. 1950; 3519
- 3b Carrick WL. Karapinka GL. Kwiatkowski GT. J. Org. Chem. 1969; 34: 2388
- 3c Imaizumi H. Sekiguchi S. Matsui K. Bull. Chem. Soc. Jpn. 1977; 50: 948
- 3d López-Cortés JG. Penieres-Carrillo G. Ortega-Alfaro MC. Gutiérrez-Pérez R. Toscano RA. Alvarez-Toledano C. Can. J. Chem. 2000; 78: 1299
- 4a Periasamy M. Jayakumar KN. Bharathi P. J. Org. Chem. 2000; 65: 3548
- 4b Desmarets C. Champagne B. Walcarius A. Bellouard C. Omar-Amrani R. Ahajji A. Fort Y. Schneider R. J. Org. Chem. 2006; 71: 1351
- 5a Xi C. Jiang Y. Yang X. Tetrahedron Lett. 2005; 46: 3909
- 5b Yang X. Xi C. Jiang Y. Synth. Commun. 2006; 36: 2413
- 6 Jiang Y. Xi C. Yang X. Synlett 2005; 1381
- 7a Kirchgessner M. Sreenath K. Gopidas KR. J. Org. Chem. 2006; 71: 9849
- 7b Sreenath K. Suneesh CV. Kumar VK. R. Gopidas KR. J. Org. Chem. 2008; 73: 3245
- 8a Murata S. Miura M. Nomura M. J. Chem. Soc., Chem. Commun. 1989; 116
- 8b Murata S. Miura M. Nomura M. J. Org. Chem. 1989; 54: 4700
- 8c Li X.-L. Huang J.-H. Yang L.-M. Org. Lett. 2011; 13: 4950
- 8d Ling X. Xiong Y. Huang R. Zhang X. Zhang S. Chen C. J. Org. Chem. 2013; 78: 5218
- 9a Saitoh T. Yoshida S. Ichikawa J. Org. Lett. 2004; 6: 4563
- 9b Saitoh T. Yoshida S. Ichikawa J. J. Org. Chem. 2006; 71: 6414
- 10 Matsumoto K. Dougomori K. Tachikawa S. Ishii T. Shindo M. Org. Lett. 2014; 16: 4754
- 11a Kita Y. Takada T. Tohma H. Pure Appl. Chem. 1996; 68: 627
- 11b Zhdankin VV. Stang PJ. Chem. Rev. 2002; 102: 2523
- 11c Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis. Wirth T. Springer; Berlin: 2003
- 11d Tohma H. Kita Y. Adv. Synth. Catal. 2004; 346: 111
- 11e Moriarty RM. J. Org. Chem. 2005; 70: 2893
- 11f Wirth T. Angew. Chem. Int. Ed. 2005; 44: 3656
- 11g Zhdankin VV. Stang PJ. Chem. Rev. 2008; 108: 5299
- 11h Ochiai M. Synlett 2009; 159
- 11i Duschek A. Kirsch SF. Angew. Chem. Int. Ed. 2011; 50: 1524
- 11j Merritt EA. Olofsson B. Synthesis 2011; 517
- 11k Fernández González D. Benfatti F. Waser J. ChemCatChem 2012; 4: 955
- 11l Yusubov MS. Zhdankin VV. Curr. Org. Synth. 2012; 9: 247
- 11m Kita Y. Dohi T. Chem. Rec. 2015; 15: 886
- 11n Dohi T. Kita Y. Curr. Org. Chem. 2016; 20: 580 ; and references therein
- 12 Ito M. Kubo H. Itani I. Morimoto K. Dohi T. Kita Y. J. Am. Chem. Soc. 2013; 135: 14078
- 13a Sariciftci NS. Smilowitz L. Heeger AJ. Wudl F. Science 1992; 258: 1474
- 13b Johnson GE. McGrane KM. Stolka M. Pure Appl. Chem. 1995; 67: 175
- 13c Horowitz G. Adv. Mater. 1998; 10: 365
- 13d Zhou X.-G. Yu X.-Q. Huang J.-S. Li S.-G. Li L.-S. Che C.-M. Chem. Commun. 1999; 1789
- 13e Hmadeh M. Traboulsi H. Elhabiri M. Braunstein P. Albrecht-Gary A. Siri O. Tetrahedron 2008; 64: 6522
- 13f Huang H. Okuno T. Tsuda K. Yoshimura M. Kitamura M. J. Am. Chem. Soc. 2006; 128: 8716
- 13g Tan B. Candeias NR. Barbas CF. III. Nat. Chem. 2011; 3: 473
- 14a Morimoto K. Sakamoto K. Ohnishi Y. Miyamoto T. Ito M. Dohi T. Kita Y. Chem. Eur. J. 2013; 19: 8726
- 14b Morimoto K. Sakamoto K. Ohnishi Y. Miyamoto T. Ito M. Dohi T. Kita Y. Angew. Chem. Int. Ed. 2016; 55: 3652
- 15a Kita Y. Egi M. Ohtsubo M. Saiki T. Takada T. Tohma H. Chem. Commun. 1996; 2225
- 15b Kita Y. Gyoten M. Ohtsubo M. Tohma H. Takada T. Chem. Commun. 1996; 1481
- 15c Takada T. Arisawa M. Gyoten M. Hamada R. Tohma H. Kita Y. J. Org. Chem. 1998; 63: 7698
- 15d Arisawa M. Utsumi S. Nakajima M. Ramesh NG. Tohma H. Kita Y. Chem. Commun. 1999; 469
- 15e Tohma H. Morioka H. Takizawa S. Arisawa M. Kita Y. Tetrahedron 2001; 57: 345
- 15f Tohma H. Iwata M. Maegawa T. Kita Y. Tetrahedron Lett. 2002; 43: 9241
- 15g Dohi T. Ito M. Morimoto K. Iwata M. Kita Y. Angew. Chem. Int. Ed. 2008; 47: 1301
- 16a Dohi T. Maruyama A. Minamitsuji Y. Takenaga N. Kita Y. Chem. Commun. 2007; 1224
- 16b Dohi T. Mochizuki E. Yamashita D. Miyazaki K. Kita Y. Heterocycles 2014; 88: 245
- 17a Itoh N. Sakamoto T. Miyazawa E. Kikugawa Y. J. Org. Chem. 2002; 67: 7424
- 17b Antonchick AP. Samanta R. Kulikov K. Lategahn J. Angew. Chem. Int. Ed. 2011; 50: 8605
- 17c Samanta R. Lategahn J. Antonchick AP. Chem. Commun. 2012; 48: 3194
- 17d Kikugawa Y. Heterocycles 2009; 78: 571
- 17e Liu H. Wang X. Gu Y. Org. Biomol. Chem. 2011; 9: 1614
- 17f Liu H. Xie Y. Gu Y. Tetrahedron Lett. 2011; 52: 4324
- 17g Tia T. Zhong W.-H. Meng S. Meng X.-B. Li Z.-J. J. Org. Chem. 2013; 78: 728
- 18a Dohi T. Maruyama A. Yoshimura M. Morimoto K. Tohma H. Kita Y. Angew. Chem. Int. Ed. 2005; 44: 6193
- 18b Dohi T. Kita Y. Chem. Commun. 2009; 2073
- 18c Dohi T. Takenaga N. Fukushima K. Uchiyama T. Kato D. Motoo S. Fujioka H. Kita Y. Chem. Commun. 2010; 7697
- 18d Dohi T. Takenaga T. Nakae T. Toyoda Y. Yamasaki M. Shiro M. Fujioka H. Maruyama A. Kita Y. J. Am. Chem. Soc. 2013; 135: 4558
- 19 Matsuzawa H. Tanabe Y. Miyake Y. Nishibayashi Y. Organometallics 2008; 27: 4021
- 20 Oxidative Coupling of N-Arylnaphthalenamines 1; General Procedure PIFA (0.75 equiv.) was added to a stirred solution of the appropriate naphthalenamine 1 (0.30 mmol, 1 equiv) in DCE (3 mL) at r.t., and the mixture was stirred for 30 min. When the reaction was complete, sat. aq NaHCO3 was added to the mixture, and the aqueous phase was extracted with CH2Cl2. The extracts were dried (Na2SO4) and evaporated to dryness, and the crude residue was purified by column chromatography (silica gel, hexane–EtOAc). N,N′-Diphenyl-(1,1′-binaphthyl)-4,4′-diamine (2a) 8c 1H NMR (400 MHz, CDCl3): δ = 6.04 (s, 2 H), 6.95 (t, J = 7.6 Hz, 2 H), 7.11 (dd, J = 1.2, 8.8 Hz, 4 H), 7.29–7.35 (m, 6 H), 7.41 (d, J = 7.6 Hz, 2 H), 7.46–7.51 (m, 6 H), 8.14 (d, J = 8.4 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 115.1, 117.6, 120.6, 121.8, 125.5, 126.1, 127.4, 127.5, 128.3, 129.4, 133.3, 134.1, 138.5, 144.6. N,N′-bis(4-Tolyl)-1,1′-binaphthalene-4,4′-diamine (2b) 8c 1H NMR (400 MHz, CDCl3): δ = 2.33 (s, 6 H), 6.00 (s, 2 H), 7.05 (d, J = 8.4 Hz, 4 H), 7.13 (d, J = 8.4 Hz, 4 H), 7.30 (t, J = 7.6 Hz, 2 H), 7.36–7.37 (m, 4 H), 7.44–7.50 (m, 4 H), 8.11 (d, J = 8.8 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 20.7, 113.4, 118.7, 121.5, 125.4, 126.0, 126.9, 127.4, 128.3, 129.9, 130.6, 132.5, 134.1, 139.3, 141.6. N,N′-Bis(4-bromophenyl)-N,N′-diphenyl-1,1′-binaphthalene-4,4′-diamine (2e) IR (KBr): 3064, 3037, 1582, 1485, 1272, 910, 736 cm–1. 1H NMR (CDCl3): δ = 6.97 (d, J = 8.8 Hz, 4 H), 7.02 (t, J = 7.2 Hz, 2 H), 7.15 (d, J = 7.6 Hz, 4 H), 7.26–7.34 (m, 10 H), 7.38 (t, J = 6.8 Hz, 2 H), 7.42 (d, J = 7.6 Hz, 2 H), 7.49 (d, J = 8.0 Hz, 2 H), 7.51 (d, J = 7.6 Hz, 2 H), 8.02 (d, J = 8.0 Hz, 2 H). 13C NMR (CDCl3): δ = 113.8, 122.50, 122.53, 123.0, 124.3, 126.4, 126.5, 126.6, 127.2, 128.5, 129.3, 131.0, 132.1, 134.5, 136.8, 142.9, 147.7, 147.9. MS (MALDI-TOF): m/z = 744.12 [M+]. N,N,N′,N′-Tetraphenyl-1,1′-binaphthalene-2,2′-diamine (2g) 19 1H NMR (CDCl3): δ = 6.44 (d, J = 8.1 Hz, 2 H), 6.45–6.58 (m, 12 H), 6.61–6.77 (m, 10 H), 7.12 (td, J = 1.2, 7.6 Hz, 2 H), 7.62 (m, 4 H), 7.78 (d, J = 8.6 Hz, 2 H). 13C NMR (CDCl3): δ = 121.7, 123.2, 124.4, 125.2, 126.6, 126.7, 127.1, 128.3, 128.7, 131.2, 131.7, 134.0, 144.4, 147.2. Catalytic Oxidative Coupling of N-Phenylnaphthalen-1-amine (1a) PhI (10 mol%) and TFA (0.2 equiv) were added to a stirred solution of amine 1a (1 equiv) in 1:1 DCE/HFIP (0.67 M) at r.t. mCPBA (0.75 equiv) was then gradually added, and the mixture was stirred for 3 h under at r.t. When the reaction was complete (TLC), sat. aq NaHCO3 was added to the mixture, and the aqueous phase was extracted with CH2Cl2. The extracts were dried (Na2SO4) and then evaporated to dryness. The crude residue was purified by column chromatography (silica gel, hexane/EtOAc) to give pure 2a; yield: 71%.
For a recent review on the oxidative biaryl coupling reaction, see:
For transition-metal-free coupling reactions, see:
For recent reviews and publications, see:
Aryl-substituted naphthalenes and anilines are important units for the implementation of molecular machines and the construction of functionalized organic materials. See:
For our hypervalent-iodine-catalyzed oxidation reactions, see: