Synlett 2017; 28(20): 2865-2870
DOI: 10.1055/s-0036-1590890
letter
© Georg Thieme Verlag Stuttgart · New York

Sequential O-Arylation/Lanthanide(III)-Catalyzed [3,3]-Sigmatropic Rearrangement of Bromo-Substituted Allylic Alcohols

Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada   eMail: rbatey@chem.utoronto.ca
,
Jun-ichi Kawakami
Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada   eMail: rbatey@chem.utoronto.ca
,
Robert A. Batey*
Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada   eMail: rbatey@chem.utoronto.ca
› Institutsangaben
We are grateful for financial support by Takeda Pharmaceutical Company (TPC) Ltd. and by the Natural Sciences and Engineering Research Council (NSERC) of Canada for a Discovery Grant to R.A.B and Alexander Graham Bell Canada Graduate Scholarships M and D3 to T.R.R.
Weitere Informationen

Publikationsverlauf

Received: 03. Juli 2017

Accepted after revision: 28. Juli 2017

Publikationsdatum:
25. August 2017 (online)


Dedicated to the Cardinal Chemist, the inimitable Prof. Victor Snieckus, on the occasion of his 80th birthday

Abstract

Lanthanide(III)-catalyzed aryl-Claisen rearrangement of substrates bearing halo-substituted allyl groups, specifically 2-bromoallyl aryl ethers, afford ortho-2-bromoallylphenols. Aryl ether substrates were synthesized from brominated allylic alcohols via Mitsunobu reaction, Cu(II)-catalyzed arylation using potassium aryltrifluoroborate salts, or SNAr reaction. Aryl-Claisen rearrangements proceeded in moderate to excellent yields using Eu(III) catalysis. The alkenylbromide functionality remains intact, illustrating the compatibility of synthetically important alkenylhalides during C–O/C–C σ-bond migration processes. Subsequent derivatization of the ortho-2-bromoallylphenol products through O-alkylation or C-arylation/alkenylation via Suzuki–Miyaura cross-coupling demonstrate the potential to access densely-functionalized molecules.

Supporting Information

 
  • References and Notes

  • 1 Koh MJ. Nguyen TT. Zhang H. Schrock RR. Hoveyda AH. Nature (London, U.K.) 2016; 531: 459 ; and references cited therein
  • 2 Johansson Seechurn CC. C. Kitching MO. Colacot TJ. Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 3a Tucker CE. Majid TN. Knochel P. J. Am. Chem. Soc. 1992; 114: 3983
    • 3b Klatt T. Markiewicz JT. Sämann C. Knochel P. J. Org. Chem. 2014; 79: 4253
    • 3c Yanagisawa A. In Science of Synthesis, 7: Category 1, Organometallics . Yamamoto H. Thieme; Stuttgart: 2004: 527

      See, for example:
    • 4a Duspara PA. Batey RA. Angew. Chem. Int. Ed. 2013; 52: 10862
    • 4b Rosocha G. Batey RA. Tetrahedron 2013; 69: 8758
    • 4c Taylor RR. R. Batey RA. J. Org. Chem. 2013; 78: 1404
    • 4d Ramadhar TR. Batey RA. Comp. Theor. Chem. 2011; 976: 167
    • 4e Ramadhar TR. Batey RA. Comp. Theor. Chem. 2011; 974: 76
    • 4f Smith CD. Gavrilyuk JI. Lough AJ. Batey RA. J. Org. Chem. 2010; 75: 702
    • 4g Rodrigues A. Lee EE. Batey RA. Org. Lett. 2010; 12: 260
    • 4h Smith CD. Rosocha G. Mui L. Batey RA. J. Org. Chem. 2010; 75: 4716
    • 4i Smith CD. Batey RA. Tetrahedron 2008; 64: 652
    • 4j Li S.-W. Batey RA. Chem. Commun. 2007; 3759
    • 4k Lee EE. Batey RA. J. Am Chem. Soc. 2005; 127: 14887
    • 4l Miller CA. Batey RA. Org. Lett. 2004; 6: 699
    • 5a Castro AM. M. Chem. Rev. 2004; 104: 2939
    • 5b Ichikawa H. Maruoka K. In The Claisen Rearrangement: Methods and Applications . Hiersemann M. Nubbemeyer U. Wiley-VCH; Weinheim: 2007. Chap. 3.1, 45-8
  • 6 For a review on the utility of dibromocyclopropane ring-opening reactions, see: Halton B. Harvey J. Synlett 2006; 1975
  • 7 Gowrisankar S. Sergeev AG. Anbarasan P. Spannenberg A. Neumann H. Beller M. J. Am. Chem. Soc. 2010; 132: 11592 ; and references cited therein
    • 8a Chan DM. T. Monaco KL. Wang RP. Winters MP. Tetrahedron Lett. 1998; 39: 2933
    • 8b Evans DA. Katz JL. West TR. Tetrahedron Lett. 1998; 39: 2937
    • 8c Lam PY. S. Clark CG. Saubern S. Adams J. Winters MP. Chan DM. T. Combs A. Tetrahedron Lett. 1998; 39: 2941
    • 8d Evano G. Blanchard N. Toumi M. Chem. Rev. 2008; 108: 3054
  • 9 Quach TD. Batey RA. Org. Lett. 2003; 5: 1381
    • 10a Fletcher S. Org. Chem. Front. 2015; 2: 739
    • 10b Swamy KC. K. Kumar NN. B. Balaraman E. Kumar KV. P. P. Chem. Rev. 2009; 109: 2551
    • 10c Hughes DL. Org. Prep. Proced. Int. 1996; 28: 127
  • 11 Terrier F. Modern Nucleophilic Aromatic Substitution. Wiley-VCH; Weinheim: 2013
  • 12 Reaction of phenols with allylic mesylates has also been used, see: Yagoubi M. Cruz AC. F. Nichols PL. Elliott RL. Willis MC. Angew. Chem. Int. Ed. 2010; 49: 7958
  • 13 Ramadhar TR. Kawakami J. Lough AJ. Batey RA. Org. Lett. 2010; 12: 4446
  • 14 For a review of catalysis of the Claisen rearrangement, see: Majumdar KC. Alam S. Chattopadhyay B. Tetrahedron 2008; 64: 597
  • 15 Trost BM. Toste FD. J. Am. Chem. Soc. 1998; 120: 815

    • Isolated examples of aryl-Claisen [3,3]-sigmatropic rearrangement of simple acyclic 2-bromoallyl aryl ethers have been reported, see:
    • 16a Parker KA. Casteel DA. J. Org. Chem. 1988; 53: 2847 ; PhNMe2, Δ, reflux
    • 16b Yoo S. Lee S.-H. Kim S.-K. Lee S.-H. Bioorg. Med. Chem. 1997; 5: 445 ; BCl3, -40 °C
    • 16c Ndungu JM. Larson KK. Sarpong R. Org. Lett. 2005; 7: 5845 ; Et2AlCl, rt
    • 16d Goundry WR. F. Lee V. Baldwin JE. Synlett 2006; 2407 ; PhNEt2, Δ, 200 °C
    • 16e Lee S. Yi KY. Lee BH. Oh KS. Bull. Korean Chem. Soc. 2012; 33: 1147 ; DMF, Δ, 200 °C
    • 16f Parsons PJ. JonesD R. Walsh LJ. Allen LA. T. Onwubiko A. Preece L. Board J. White AJ. P. Org. Lett. 2017; 19: 2533 ; H2O, Δ, 195 °C
  • 17 General Procedure for O-Aryl 2-Bromoallylic Ether Synthesis via Cu(II)-Catalyzed Arylation A suspension of ArBF3K, Cu(OAc)2·H2O (10 mol%), DMAP (20 mol%), and powdered 4Å MS in CH2Cl2 was stirred at rt for 5 min. To this suspension was added alcohol 6. The mixture was stirred at rt for 60–72 h under an O2 atmosphere. Subsequently, the mixture was filtered through a pad of Celite, and the filtrate was concentrated in vacuo. The resultant crude mixture was purified using flash column chromatography on silica gel to afford aryl ether 7. Example Reaction of 6a (0.250 g, 1.4 mmol) with 4-FC6H4BF3K (0.601 g (95% purity), 2.8 mmol) using the general procedure afforded 7c (0.171 g, 45%) as a clear oil. Analytical Data for Compound 7c Rf = 0.43 (5% EtOAc/hexanes). IR (thin film): νmax = 3073, 3051, 2945, 2934, 2866, 2834, 1647, 1601, 1505, 1439, 1368, 1240, 1202, 1090, 1057, 999, 974, 914, 826, 785, 725 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.00–6.94 (4 H, m), 6.38 (1 H, dd, J = 5.0, 3.0 Hz), 4.64–4.62 (1 H, m), 2.27–2.19 (1 H, m), 2.14–2.04 (1 H, m), 1.86–1.74 (2 H, m), 1.70–1.61 (1 H, m). 13C NMR (100 MHz, CDCl3): δ = 158.0 (d, 1 J CF = 239.5 Hz), 154.4 (d, 4 J CF = 2.5 Hz), 135.0, 121.2, 118.6 (d, 3 J CF = 8.0 Hz), 116.1 (d, 2 J CF = 23.0 Hz), 78.0, 29.3, 28.0, 16.8. 19F NMR (376 MHz, CDCl3): δ = –123.41 (m). LRMS (EI+): m/z (rel. intensity) = 272 (5), 270 (5) [M]+, 161 (14), 160 (93), 159 (17), 158 (94), 112 (78), 79 (100). HRMS (EI+): m/z calcd for C12H12OFBr [M]+: 270.0056; found: 270.0061.
  • 18 General Procedure for the Aryl-Claisen Rearrangement of O-Aryl 2-Bromoallylic Ethers 7 to 8 A mixture of aryl ether 7 and Eu(fod)3 (5 mol%) in PhMe was stirred at 120–130 °C in a sealed tube for 24 h under an atmosphere of argon. The mixture was directly purified (without removal of the solvent under reduced pressure) by flash column chromatography on silica gel (gradient: hexanes – 25% EtOAc/ hexanes) to afford phenol 8. Example Reaction of 7c (0.050 g, 0.18 mmol) using the general procedure afforded 8c (0.048 g, 96%) as a white solid. Data for Compound 8c Mp 52–53 °C (EtOAc/hexanes); Rf = 0.53 (25% EtOAc/hexanes). IR (thin film with CDCl3): νmax = 3468 (br), 2928, 2860, 1644, 1620, 1597, 1504, 1434, 1332, 1260, 1172 cm–1. 1H NMR (400 MHz, CDCl3): δ = 6.89 (1 H, dd, J = 9.5, 3.0 Hz), 6.82 (1 H, ddd, J = 8.5, 8.0, 3.0 Hz), 6.70 (1 H, dd, J = 8.5, 4.5 Hz), 6.40 (1 H, ddd, J = 4.0, 4.0, 1.5 Hz), 4.81 (1 H, br s), 4.02–3.99 (1 H, m), 2.26–2.13 (2 H, m), 2.11–2.03 (1 H, m), 1.90–1.83 (1 H, m), 1.63–1.52 (2 H, m). 13C NMR (100 MHz, CDCl3): δ = 157.4 (d, 1 J CF = 237.5 Hz), 149.3 (d, 4 J CF = 2.5 Hz), 133.2, 131.0 (d, 3 J CF = 6.5 Hz), 123.5, 116.6 (d, 3 J CF = 8.0 Hz), 116.4 (d, 2 J CF = 24.0 Hz), 114.1 (d, 2 J CF = 23.0 Hz), 44.0, 31.1, 27.9, 18.0. 19F NMR (376 MHz, CDCl3): δ = –123.9 (ddd, J FH = 8.5, 8.5, 4.5 Hz). LRMS (EI+): m/z (rel. intensity) = 272 (5), 270 (6) [M]+, 191 (39), 163 (29), 149 (16), 133 (11), 125 (13), 109 (10), 86 (73), 84 (100). HRMS (EI+): m/z calcd for C12H12OBrF [M]+: 270.0056; found: 270.0059.
  • 19 CCDC 1558909 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 20 Molander GA. Felix LA. J. Org. Chem. 2005; 70: 3950
  • 21 Old DW. Wolfe JP. Buchwald SL. J. Am. Chem. Soc. 1998; 120: 9722
  • 22 Bartoli G. Bosco M. Carlone A. Dalpozzo R. Locatelli M. Melchiorre P. Sambri L. J. Org. Chem. 2006; 71: 9580