RSS-Feed abonnieren
DOI: 10.1055/s-0036-1590908
Transition-Metal-Catalyzed Carboxylation of Organic Halides and Their Surrogates with Carbon Dioxide
This work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB20000000), ‘1000-Youth Talents Plan’, NSF of China (Grant 21421091, 21572245), and S&TCSM of Shanghai (Grant 15PJ1410200, 17JC1401200). We thank Wuyi University for supporting Yi-Qian Li and Li-Pu Zhang.Publikationsverlauf
Received: 19. August 2017
Accepted after revision: 24. August 2017
Publikationsdatum:
13. September 2017 (online)
Abstract
Carbon dioxide is not only an essential component of ‘greenhouse gases’, but also an abundant, renewable C1 feedstock in organic synthesis. The catalytic incorporation of carbon dioxide into value-added chemicals to produce carboxylic acids has received enormous attention. This review summarizes recent developments in the transition-metal-catalyzed carboxylation of organic halides and their surrogates, such as aryl, vinyl, and alkyl halides and pseudohalides.
1 Introduction
2 Carboxylation of Aryl Halides and Pseudohalides
3 Carboxylation of Vinyl Halides and Pseudohalides
4 Carboxylation of Benzyl Halides and Pseudohalides
5 Carboxylation of Allyl Halides and Pseudohalides
6 Carboxylation of Propargyl Halides and Pseudohalides
7 Carboxylation of Alkyl Halides and Pseudohalides
8 Direct Carboxylation of C–H Bonds
9 Conclusions and Perspectives
-
References
- 1a Cokoja M. Bruckmeier C. Rieger B. Herrmann WA. Kuehn FE. Angew. Chem. Int. Ed. 2011; 50: 8510
- 1b Takeda H. Ishitani O. Coord. Chem. Rev. 2010; 254: 346
- 2a Qiao J. Liu Y. Hong F. Zhang J. Chem. Soc. Rev. 2014; 43: 631
- 2b Aresta M. Dibenedetto A. Angelini A. Chem. Rev. 2014; 114: 1709
- 3a Mikkelsen M. Jørgensen M. Krebs FC. Energy Environ. Sci. 2010; 3: 43
- 3b Correa A. Martín R. Angew. Chem. Int. Ed. 2009; 48: 6201
- 4 Kerton FM. Elkurtehi AI. ChemSusChem 2017; 10: 1249
- 5a Yu D. Teong SP. Zhang Y. Coord. Chem. Rev. 2015; 293: 279
- 5b Liu Q. Wu L. Jackstell R. Beller M. Nat. Commun. 2015; 6: 5933
- 5c Kirillov E. Carpentier JF. Bunel E. Dalton Trans. 2015; 44: 16212
- 5d Yeung CS. Dong VM. Top. Catal. 2014; 57: 1342
- 5e Johnson MT. Wendt OF. J. Organomet. Chem. 2014; 751: 213
- 5f Zhang L. Hou Z. Chem. Sci. 2013; 4: 3395
- 5g Tsuji Y. Fujihara T. Chem. Commun. 2012; 48: 9956
- 5h Fan T. Chen X. Lin Z. Chem. Commun. 2012; 48: 10808
- 5i Huang K. Sun C.-L. Shi Z.-J. Chem. Soc. Rev. 2011; 40: 2435
- 5j Riduan SN. Zhang Y. Dalton Trans. 2010; 39: 3347
- 6a Carmona E. Palma P. Paneque M. Poveda ML. Gutierrez-Puebla E. Monge A. J. Am. Chem. Soc. 1986; 108: 6424
- 6b Carmona E. Gutierrez-Puebla E. Marin JM. Monge A. Paneque M. Poveda ML. Ruiz C. J. Am. Chem. Soc. 1989; 111: 2883
- 7 Osakada K. Sato R. Yamamoto T. Organometallics 1994; 13: 4645
- 8 Fauvarque JF. Chevrot C. Jutand A. François M. Perichon J. J. Organomet. Chem. 1984; 264: 273
- 9 Amatore C. Jutand A. J. Am. Chem. Soc. 1991; 113: 2819
- 10 Torii S. Tanaka H. Hamatani T. Morisaki K. Jutand A. Pfluger F. Fauvarque J.-F. Chem. Lett. 1986; 169
- 11a Barba F. Guirado A. Zapata A. Electrochim. Acta 1982; 27: 1335
- 11b Sock O. Troupel M. Perichon J. Tetrahedron Lett. 1985; 26: 1509
- 12 Amatore C. Jutand A. Khalil F. Nielsen MF. J. Am. Chem. Soc. 1992; 114: 7076
- 13 Correa A. Martín R. J. Am. Chem. Soc. 2009; 131: 15974
- 14 Fujihara T. Nogi K. Xu T. Terao J. Tsuji Y. J. Am. Chem. Soc. 2012; 134: 9106
- 15 Tran-Vu H. Daugulis O. ACS Catal. 2013; 3: 2417
- 16 Correa A. León T. Martin R. J. Am. Chem. Soc. 2014; 136: 1062
- 17 Jutand A. Négri S. Synlett 1997; 719
- 18 Nogi K. Fujihara T. Terao J. Tsuji Y. J. Org. Chem. 2015; 80: 11618
- 19a Floriani C. Fachinetti G. J. Chem. Soc., Chem. Commun. 1974; 615
- 19b Folest J.-C. Duprilot J.-M. Perichon J. Tetrahedron Lett. 1985; 26: 2633
- 20 León T. Correa A. Martin R. J. Am. Chem. Soc. 2013; 135: 1221
- 21 Sayyed FB. Sakaki S. Chem. Commun. 2014; 50: 13026
- 22a Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 22b Greene MA. Yonova IM. Williams FJ. Jarvo ER. Org. Lett. 2012; 14: 4293
- 22c Srogl J. Liu W. Marshall D. Liebeskind LS. J. Am. Chem. Soc. 1999; 121: 9449
- 23 Moragas T. Gaydou M. Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
- 24 Zhang S. Chen W.-Q. Yu A. He L.-N. ChemCatChem 2015; 7: 3972
- 25 Chen B.-L. Zhu H.-W. Xiao Y. Sun Q.-L. Wang H. Lu J.-X. Electrochem. Commun. 2014; 42: 55
- 26 Sasaki Y. Inoue Y. Hashimoto H. J. Chem. Soc., Chem. Commun. 1976; 605
- 27 Moragas T. Cornella J. Martin R. J. Am. Chem. Soc. 2014; 136: 17702
- 28 Mita T. Higuchi Y. Sato Y. Chem. Eur. J. 2015; 21: 16391
- 29 van Gemmeren M. Böjesson M. Tortajada A. Sun S.-Z. Okura K. Martin R. Angew. Chem. Int. Ed. 2017; 56: 6558
- 30 Chen Y.-G. Shuai B. Ma C. Zhang X.-J. Fang P. Mei T.-S. Org. Lett. 2017; 19: 2969
- 31 Nogi K. Fujihara T. Terao J. Tsuji Y. Chem. Commun. 2014; 50: 13052
- 32 Liu Y. Cornella J. Martin R. J. Am. Chem. Soc. 2014; 136: 11212
- 33 Börjesson M. Moragas T. Martin R. J. Am. Chem. Soc. 2016; 138: 7504
- 34 Wang X. Liu Y. Martin R. J. Am. Chem. Soc. 2015; 137: 6476
- 35 Moragas T. Martin R. Synthesis 2016; 48: 2816
- 36 Juliá-Hernández F. Moragas T. Cornella J. Martin R. Nature (London) 2017; 545: 84
- 37 Boogaerts II. F. Nolan SP. J. Am. Chem. Soc. 2010; 132: 8858
- 38 Inomata H. Ogata K. Fukuzawa S.-i. Hou Z. Org. Lett. 2012; 14: 3986
- 39 Mizuno H. Takaya J. Iwasawa N. J. Am. Chem. Soc. 2011; 133: 1251
- 40 Ueno A. Takimoto M. Hou Z. Org. Biomol. Chem. 2017; 15: 2370
- 41 Michigami K. Mita T. Sato Y. J. Am. Chem. Soc. 2017; 139: 6094
- 42a Zhang Z. Ju T. Ye J.-H. Yu D.-G. Synlett 2017; 28: 741
- 42b Zhang Z. Liao L.-L. Yan S.-S. Wang L. He Y.-Q. Ye J.-H. Li J. Zhi Y.-G. Yu D.-G. Angew. Chem. Int. Ed. 2016; 55: 7068
- 43 Masuda Y. Ishida N. Murakami M. J. Am. Chem. Soc. 2015; 137: 14063