Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(02): 176-180
DOI: 10.1055/s-0036-1590921
DOI: 10.1055/s-0036-1590921
letter
Synthesis of 6-Thiocyanatophenanthridines by Visible-Light- and Air-Promoted Radical Thiocyanation of 2-Isocyanobiphenyls
Further Information
Publication History
Received: 08 August 2017
Accepted after revision: 07 September 2017
Publication Date:
26 September 2017 (online)

Abstract
A convenient, efficient, and metal-free synthesis of 6-thiocyanatophenanthridines by visible-light- and air-mediated, eosin Y-catalyzed, sequential radical cyclization and aromatization of 2-isocyanobiphenyls with ammonium thiocyanate is reported. Advantageously, the protocol utilizes inexpensive, clean, and sustainable natural resources such as visible light and atmospheric oxygen at room temperature in a one-pot procedure.
Key words
radical reaction - photochemistry - cyclization - photoredox catalysis - thiocyanation - phenanthridinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590921.
- Supporting Information
-
References
- 1a Noble A. MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 11602
- 1b Terrett JA. Clift MD. MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 6858
- 1c Pirnot MT. Rankic DA. Martin DB. C. MacMillan DW. C. Science 2013; 339: 1593
- 1d Nagib DA. Scott ME. MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 10875
- 1e Nicewicz DA. MacMillan DW. C. Science 2008; 322: 77
- 2a Du J. Yoon TP. J. Am. Chem. Soc. 2009; 131: 14604
- 2b Ischay MA. Anzovino ME. Du J. Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
- 3a Konieczynska MD. Dai C. Stephenson CR. J. Org. Biomol. Chem. 2012; 10: 4509
- 3b Dai C. Narayanam JM. R. Stephenson CR. J. Nat. Chem. 2011; 3: 140
- 3c Condie AG. González-Gómez JC. Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
- 3d Tucker JW. Narayanam JM. R. Krabbe SW. Stephenson CR. J. Org. Lett. 2010; 12: 368
- 3e Narayanam JM. R. Tucker JW. Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
- 4a Hong B.-C. Kotame P. Tsai C.-W. Liao J.-H. Org. Lett. 2010; 12: 776
- 4b Zhou J. Chem. Asian J. 2010; 5: 422
- 4c Zhong C. Shi X. Eur. J. Org. Chem. 2010; 2999
- 4d Ishikawa H. Suzuki T. Hayashi Y. Angew. Chem. Int. Ed. 2009; 48: 1304
- 4e Jakubec P. Cockfield DM. Dixon DJ. J. Am. Chem. Soc. 2009; 131: 16632
- 5a Rueping M. Vila C. Bootwicha T. ACS Catal. 2013; 3: 1676
- 5b Hari DP. Schroll P. König B. J. Am. Chem. Soc. 2012; 134: 2958
- 5c Hari DP. Hering T. König B. Org. Lett. 2012; 14: 5334
- 5d Hering T. Hari DP. König B. J. Org. Chem. 2012; 77: 10347
- 5e Liu Q. Li Y.-N. Zhang H.-H. Chen B. Tung C.-H. Wu L.-Z. Chem. Eur. J. 2012; 18: 620
- 5f Fidaly K. Ceballos C. Falguières A. Veitia MS.-I. Guy A. Ferroud C. Green Chem. 2012; 14: 1293
- 5g Yu J. Zhang L. Yan G. Adv. Synth. Catal. 2012; 354: 2625
- 5h Neumann M. Füldner S. König B. Zeitler K. Angew. Chem. Int. Ed. 2011; 50: 951
- 5i Hari DP. König B. Org. Lett. 2011; 13: 3852
- 5j Pan Y. Kee CW. Chen L. Tan C.-H. Green Chem. 2011; 13: 2682
- 5k Pan Y. Wang S. Kee CW. Dubuisson E. Yang YK. Loha P. Tan C.-H. Green Chem. 2011; 13: 3341
- 6a Yadav AK. Yadav LD. S. Tetrahedron Lett. 2015; 56: 686
- 6b Gu L. Jin C. Liu J. Dinga H. Fan B. Chem. Commun. 2014; 50: 4643
- 6c Keshari T. Yadav VK. Srivastava VP. Yadav LD. S. Green Chem. 2014; 16: 3986
- 6d Srivastava VP. Yadav AK. Yadav LD. S. Tetrahedron Lett. 2014; 55: 1788
- 6e Yadav AK. Srivastava VP. Yadav LD. S. RSC Adv. 2014; 4: 24498
- 6f Xie J. Jin H. Xu P. Zhu C. Tetrahedron Lett. 2014; 55: 36
- 6g Nicewicz DA. Nguyen TM. ACS Catal. 2014; 4: 355
- 6h Reckenthäler M. Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727
- 6i Hu J. Wang J. Nguyen TH. Zheng N. Beilstein J. Org. Chem. 2013; 9: 1977
- 6j Xuan J. Lu L.-Q. Chen J.-R. Xiao W.-J. Eur. J. Org. Chem. 2013; 6755
- 6k Tucker JW. Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
- 6l Maity S. Zheng N. Synlett 2012; 1851
- 6m Zou Y.-Q. Chen J.-R. Liu X.-P. Lu L.-Q. Davis RL. Jørgensen KA. Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 784
- 7a Park GY. Wilson JJ. Song Y. Lippard SJ. Proc. Natl. Acad. Sci. 2012; 109: 11987
- 7b Li K. Frankowski KJ. Belon CA. Neuenswander B. Ndjomou J. Hanson AM. Shanahan MA. Schoenen FJ. Blagg BS. J. Aubé J. Frick DN. J. Med. Chem. 2012; 55: 3319
- 7c Denny WA. Curr. Med. Chem. 2002; 9: 1655
- 7d Ishikawa T. Med. Res. Rev. 2001; 21: 61
- 7e Nakanishi T. Suzuki M. Saimoto A. Kabasawa T. J. Nat. Prod. 1999; 62: 864
- 8a Tumir LM. Stojković MR. Piantanida I. Beilstein J. Org. Chem. 2014; 10: 2930
- 8b Walton JC. Acc. Chem. Res. 2014; 47: 1406
- 8c Pandey G. Gadre SR. Pure Appl. Chem. 2012; 84: 1597
- 8d Khadka DB. Cho WJ. Bioorg. Med. Chem. 2011; 19: 724
- 9 Nanni D. Pareschi P. Rizzoli C. Sgarabotto P. Tundo A. Tetrahedron 1995; 51: 9045
- 10a Yao Q. Zhou X. Zhang X. Wang C. Wang P. Li M. Org. Biomol. Chem. 2017; 15: 957
- 10b Zhou H. Deng X. Zhang A. Tan R. Org. Biomol. Chem. 2016; 14: 10407
- 10c Fang H. Zhao J. Ni S. Mei H. Han J. Pan Y. J. Org. Chem. 2015; 80: 3151
- 10d Wang B. Dai Y. Tong W. Gong H. Org. Biomol. Chem. 2015; 13: 11418
- 10e Xu Z. Yan C. Liu Z.-Q. Org. Lett. 2014; 16: 5670
- 10f Li Z. Fan F. Yang J. Liu Z.-Q. Org. Lett. 2014; 16: 3396
- 10g Zhu Z.-Q. Wang TT. Bai P. Huang Z.-Z. Org. Biomol. Chem. 2014; 12: 5839
- 10h Sha W. Yu J.-T. Jiang Y. Yang H. Cheng J. Chem. Commun. 2014; 50: 9179
- 10i Wang L. Sha W. Dai Q. Feng X. Wu W. Chen HB. Cheng J. Org. Lett. 2014; 16: 2088
- 10j Cao J.-J. Wang X. Wang S.-Y. Ji S.-J. Chem. Commun. 2014; 50: 12892
- 10k Yang X.-L. Chen F. Zhou N.-N. Yu W. Han B. Org. Lett. 2014; 16: 6476
- 10l Jiang H. Wang YR. Zheng M. Zhang Y. Yu S. Angew. Chem. Int. Ed. 2013; 52: 13289
- 11a Zhou Y. Wu C. Dong X. Qu J. J. Org. Chem. 2016; 81: 5202
- 11b Pan C. Zhang H. Han J. Cheng Y. Zhu C. Chem. Commun. 2015; 51: 3786
- 11c Xiao T. Li L. Lin G. Wang Q. Zhang P. Mao Z.-w. Zhou L. Green Chem. 2014; 16: 2418
- 11d Xia Z. Huang J. He Y. Zhao J. Lei J. Zhu Q. Org. Lett. 2014; 16: 2546
- 11e Wang R. Jiang H. Cheng Y. Kadi AA. Fun H.-K. Zhang Y. Yu S. Synthesis 2014; 2711
- 11f Tobisu M. Koh K. Furukawa T. Chatani N. Angew. Chem. Int. Ed. 2012; 51: 11363 ; see also Ref. 6 (b)
- 12a Sakamoto R. Kashiwagi H. Selvakumar S. Moteki SA. Maruoka K. Org. Biomol. Chem. 2016; 14: 6417
- 12b Rong J. Deng L. Tan P. Ni C. Gu Y. Hu J. Angew. Chem. Int. Ed. 2016; 55: 2743
- 12c Wang S. Jia W.-L. Wang L. Liu Q. Eur. J. Org. Chem. 2015; 6817
- 12d Tang X. Song S. Liu C. Zhu R. Zhang B. RSC Adv. 2015; 5: 76363
- 12e Gu J.-W. Zhang X. Org. Lett. 2015; 17: 5384
- 12f Zhang Z. Tang X. Dolbier WR. Jr. Org. Lett. 2015; 17: 4401
- 12g Zhang B. Studer A. Org. Lett. 2014; 16: 3990
- 12h Sun X. Yu S. Org. Lett. 2014; 16: 2938
- 12i Zhang B. Mück-Lichtenfeld C. Daniliuc CG. Studer A. Angew. Chem. Int. Ed. 2013; 52: 10792
- 12j Wang Q. Dong X. Xiao T. Zhou L. Org. Lett. 2013; 15: 4846
- 13a Tu H.-Y. Liu Y.-R. Chu J.-J. Hu B.-L. Zhang X.-G. J. Org. Chem. 2014; 79: 9907
- 13b Feng X. Zhu H. Wang L. Jiang Y. Cheng J. Yu J.-T. Org. Biomol. Chem. 2014; 12: 9257
- 13c Liu J. Fan C. Yin H. Qin C. Zhang G. Zhang X. Yi H. Lei A. Chem. Commun. 2014; 50: 2145
- 13d Li X. Fang M. Hu P. Hong G. Tang Y. Xu X. Adv. Synth. Catal. 2014; 356: 2103
- 13e Pan C. Han J. Zhang H. Zhu C. J. Org. Chem. 2014; 79: 5374
- 13f Leifert D. Daniliuc CG. Studer A. Org. Lett. 2013; 15: 6286
- 14a Zhang B. Daniliuc CG. Studer A. Org. Lett. 2014; 16: 250
- 14b Gao Y. Wu J. Xu J. Wang X. Tang G. Zhao Y. Asian J. Org. Chem. 2014; 3: 691
- 14c Li Y. Qiu G. Ding Q. Wu J. Tetrahedron 2014; 70: 4652
- 14d Cao J.-J. Zhu T.-H. Gu Z.-Y. Hao W.-J. Wang S.-Y. Ji S.-J. Tetrahedron 2014; 70: 6985
- 15a Wang L. Zhu H. Guo S. Cheng J. Yu J.-T. Chem. Commun. 2014; 50: 10864
- 15b Fang H. Zhao J. Qian P. Han J. Pan Y. Asian J. Org. Chem. 2014; 3: 1266
- 16a Lei J. Huang J. Zhu Q. Org. Biomol. Chem. 2016; 14: 2593
- 16b Yu J.-T. Pan C. Chem. Commun. 2016; 52: 2220
- 16c Zhang B. Studer A. Chem. Soc. Rev. 2015; 44: 3505
- 17a Mitra S. Ghosh M. Mishra S. Hajra A. J. Org. Chem. 2015; 80: 8275
- 17b Fan W. Yang Q. Xu F. Li P. J. Org. Chem. 2014; 79: 10588
- 18a Sengupta D. Basu B. Tetrahedron Lett. 2013; 54: 2277
- 18b Melzig L. Stemper J. Knochel P. Synthesis 2010; 2085
- 18c Wei ZL. Kozikowski AP. J. Org. Chem. 2003; 68: 9116
- 18d Grant MS. Snyder HR. J. Am. Chem. Soc. 1960; 82: 2742
- 19a Yadav AK. Yadav LD. S. Green Chem. 2016; 18: 4240
- 19b Yadav VK. Srivastava VP. Yadav LD. S. Tetrahedron Lett. 2016; 57: 155
- 19c Kapoorr R. Singh SN. Tripathi S. Yadav LD. S. Synlett 2015; 26: 1201
- 19d Yadav AK. Yadav LD. S. Green Chem. 2015; 17: 3515
- 19e Singh AK. Chawla R. Yadav LD. S. Tetrahedron Lett. 2015; 56: 653
- 19f Srivastava VP. Yadav AK. Yadav LD. S. Synlett 2014; 25: 665
- 19g Yadav AK. Yadav LD. S. Tetrahedron Lett. 2014; 55: 2065
- 19h Yadav AK. Srivastava VP. Yadav LD. S. RSC Adv. 2014; 4: 4181
- 20 6-Thiocyanatophenanthridines 2; General Procedure A mixture of the appropriate isocyanobiphenyl 1 (1 mmol), NH4SCN 2 (1.0 mmol), eosin Y (2 mol%), and CH3CN (3 mL) in a flask open to the air was stirred at r.t. for 8–16 h with irradiation by green LEDs (2.50 W, λ = 535 nm) (Scheme 2). When the reaction was complete (TLC), H2O (5 mL) was added and the mixture was extracted with EtOAc (3 × 5 mL). The organic phases were combined, dried (Na2SO4), filtered, and concentrated under reduced pressure. The resulting crude product was purified by chromatography [silica gel, hexane–EtOAc (4:1)]. Phenanthridin-6-yl Thiocyanate (2a) Yellowish solid; yield: 198 mg (84%); mp 152−154 °C. 1H NMR (400 MHz, CDCl3): δ = 8.90 (d, J = 8.4 Hz, 1 H), 8.63 (d, J = 8.4 Hz, 1 H), 8.51 (d, J = 8.0 Hz, 1 H), 8.22 (d, J = 7.6 Hz, 1 H), 7.81 (m, 1 H), 7.75–7.66 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 158.7, 140.8, 134.8, 131.1, 130.6, 129.2, 129.0, 128.3, 126.6, 125.0, 122.7, 121.7, 120.6, 98.4. HRMS (EI); m/z calcd for C14H8N2S: 236.0408; found: 236.0405. 8-Methoxyphenanthridin-6-yl Thiocyanate (2f) Yellow solid; yield: 231 mg (87%); mp 145−147 °C. 1H NMR (400 MHz, CDCl3): δ = 8.58 (d, J = 9.2 Hz, 1 H), 8.47–8.44 (m, 1 H), 8.30 (d, J = 2.4 Hz, 1 H), 8.26–8.24 (m, 1 H), 7.74–7.71 (m, 2 H), 7.51 (dd, J = 9.2, 2.4 Hz, 1 H), 4.02 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 157.6, 151.7, 140.0, 131.1, 129.4, 129.1, 128.2, 125.2, 124.2, 122.0, 121.5, 121.3, 109.0, 98.6, 55.7. HRMS (EI): m/z calcd for C15H10N2OS: 266.0514; found: 266.0510. 8-Cyanophenanthridin-6-yl Thiocyanate (2m) Orange solid; yield: 185 mg (71%); mp 186−189 °C. 1H NMR (400 MHz, CDCl3): δ = 9.25 (s, 1 H), 8.74 (d, J = 8.8 Hz, 1 H), 8.52 (d, J = 8.0 Hz, 1 H), 8.26 (d, J = 8.4 Hz, 1 H), 8.01 (d, J = 8.4 Hz, 1 H), 7.93–7.78 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 152.0, 141.4, 137.1, 133.4, 131.7, 131.5, 131.1, 130.0, 124.0, 123.6, 122.3, 120.1, 118.2, 110.4, 97.4. HRMS (EI): m/z calcd for C15H7N3S: 261.0361; found: 237.0364.
- 21 Fekarurhobo GK. Angaye SS. Obomann FG. J. Emerging Trends Eng. Appl. Sci. 2013; 4: 394
For recent examples of the use of organic dyes as photoredox catalysts, see:
For the synthesis of phenanthridine derivatives with alkyl radicals, see:
For the synthesis of phenanthridine derivatives with aryl radicals, see:
For the synthesis of phenanthridine derivatives with chloro/fluoroalkyl radicals, see:
For the synthesis of phenanthridine derivatives with acyl radicals, see:
For the synthesis of phenanthridine derivatives with P-centered radicals, see:
For the synthesis of phenanthridine derivatives with silyl and phenylsulfanyl radicals, see:
For reviews on the synthesis of phenanthridines through intermediate imidoyl radicals, see: