Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(02): 295-302
DOI: 10.1055/s-0036-1590929
DOI: 10.1055/s-0036-1590929
paper
Brønsted Acid Catalyzed Dehydrative Nucleophilic Substitution of C3-Substituted 2-Indolylmethanols with Azlactones
We appreciate very much the financial support from NSFC (21372002 and 21232007), the Natural Science Foundation of Jiangsu Province (BK20160003 and BK20170227), PAPD, TAPP, and Undergraduate Student Project of Jiangsu province.Further Information
Publication History
Received: 25 August 2017
Accepted after revision: 13 September 2017
Publication Date:
12 October 2017 (online)
Abstract
An efficient dehydrative nucleophilic substitution reaction of C3-substituted2-indolylmethanols with azlactones has been established. In the whole process, Brønsted acid was supposed to activate two substrates simultaneously. A series of structurally diversified indole derivatives were obtained in generally good yields and high diastereoselectivities (up to 86% yield, >95:5 dr). This protocol not only provides a new strategy for the direct synthesis of structurally diversified indole derivatives, but also enriches the chemistry of 2-indolylmethanols via dehydrative substitution reaction.
Key words
dehydrative nucleophilic substitution - indole derivatives - azlactone - 2-indolylmethanolSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1590929.
- Supporting Information
- CIF File
-
References
- 1a Bandini M. Tragni M. Org. Biomol. Chem. 2009; 7: 1501
- 1b Emer E. Sinisi R. Capdevila MG. Petruzziello D. De Vincentiis F. Cozzi PG. Eur. J. Org. Chem. 2011; 647
- 1c Sundararaju B. Achard M. Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
- 1d Kumar R. Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 1121
- 1e Naredla RR. Klumpp DA. Chem. Rev. 2013; 113: 6905
- 1f Chen L. Yin X.-P. Wang C.-H. Zhou J. Org. Biomol. Chem. 2014; 12: 6033
- 1g Dryzhakov M. Richmond E. Moran J. Synthesis 2016; 48: 935
- 2 Constable DJ. C. Dunn PJ. Hayler JD. Humphrey GR. Leazer JL. J. Linderman RJ. Lorenz K. Manley J. Pearlman BA. Wells A. Zaks A. Zhang TY. Green Chem. 2007; 9: 411
- 3a Trost BM. Science 1991; 254: 1471
- 3b Sheldon RA. Pure Appl. Chem. 2000; 72: 1233
- 3c Wender PA. Verma VA. Paxton TJ. Pillow TH. Acc. Chem. Res. 2008; 41: 40
- 3d Newhouse T. Baran PS. Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
- 4a Chen L. Zhu F. Wang C.-H. Zhou J. RSC Adv. 2013; 3: 19880
- 4b Tao Z.-L. Zhang W.-Q. Chen D.-F. Adele A. Gong L.-Z. J. Am. Chem. Soc. 2013; 135: 9255
- 4c Krautwald S. Sarlah D. Schafroth MA. Carreira EM. Science 2013; 340: 1065
- 4d Wang P.-S. Zhou X.-L. Gong L.-Z. Org. Lett. 2014; 16: 976
- 4e Xiao J. Zhao K. Loh T.-P. Chem. Commun. 2012; 48: 3548
- 4f Xiao J. Org. Lett. 2012; 14: 1716
- 4g Xiao J. Zhao K. Loh T.-P. Chem. Asian J. 2011; 6: 2890
- 5a Humphrey GR. Kuethe JT. Chem. Rev. 2006; 106: 2875
- 5b Bandini M. Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 5c Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
- 6 For a recent review, see: Taber DF. Tirunahari PK. Tetrahedron 2011; 67: 7195
- 7a Mei G.-J. Shi F. J. Org. Chem. 2017; 82: 7695
- 7b Zhu S. Xu B. Wang L. Xiao J. Chin. J. Org. Chem. 2016; 36: 1229
- 7c Wang L. Chen Y.-Y. Xiao J. Asian J. Org. Chem. 2014; 3: 1036
- 8a Guo Q.-X. Peng Y.-G. Zhang J.-W. Song L. Feng Z. Gong L.-Z. Org. Lett. 2009; 11: 4620
- 8b Sun F.-L. Zeng M. Gu Q. You S.-L. Chem. Eur. J. 2009; 15: 8709
- 8c Cozzi PG. Benfatti F. Zoli L. Angew. Chem. Int. Ed. 2009; 48: 1313
- 8d Xiao J. Wen H. Wang L. Xu L. Hao Z. Shao C.-L. Wang C.-Y. Green Chem. 2016; 18: 1032
- 8e Wang X. Liu J. Xu L. Hao Z. Wang L. Xiao J. RSC Adv. 2015; 5: 101713
- 8f Wen H. Wang L. Xu L. Hao Z. Shao C.-L. Wang C.-Y. Xiao J. Adv. Synth. Catal. 2015; 357: 4023
- 8g Liu J. Wang L. Wang X. Xu L. Hao Z. Xiao J. Org. Biomol. Chem. 2016; 14: 11510
- 9a Qi S. Liu CY. Ding JY. Han FS. Chem. Commun. 2014; 50: 8605
- 9b Liu CY. Han FS. Chem. Commun. 2015; 51: 11844
- 9c Bera K. Schneider C. Chem. Eur. J. 2016; 22: 7074
- 9d Bera K. Schneider C. Org. Lett. 2016; 18: 5660
- 9e Zhang H.-H. Wang C.-S. Li C. Mei G.-J. Li Y. Shi F. Angew. Chem. Int. Ed. 2017; 56: 116
- 9f Zhu Z.-Q. Shen Y. Liu J.-X. Tao J.-Y. Shi F. Org. Lett. 2017; 19: 1542
- 10a Fisk JS. Mosey RA. Tepe JJ. Chem. Soc. Rev. 2007; 36: 1432
- 10b Tepe J. Hewlett N. Hupp C. Synthesis 2009; 2825
- 10c Alba AN. Rios R. Chem. Asian J. 2011; 6: 720
- 10d de Castro PP. Carpanez AG. Amarante GW. Chem. Eur. J. 2016; 22: 10294
- 11a Fisk JS. Tepe JJ. J. Am. Chem. Soc. 2007; 129: 3058
- 11b Yu X.-Y. Chen J.-R. Wei Q. Cheng H.-G. Liu Z.-C. Xiao W.-J. Chem. Eur. J. 2016; 22: 6774
- 11c Kikuchi J. Momiyama N. Terada M. Org. Lett. 2016; 18: 252
- 11d Yamanaka M. Sakata K. Yoshioka K. Uraguchi D. Ooi T. J. Org. Chem. 2017; 82: 541
- 12a Zhang Y.-C. Zhao J.-J. Jiang F. Sun S.-B. Shi F. Angew. Chem. Int. Ed. 2014; 53: 13912
- 12b Zhao J.-J. Sun S.-B. He S.-H. Wu Q. Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
- 12c Mei G.-J. Bian C.-Y. Li G.-H. Xu S.-L. Zheng W.-Q. Shi F. Org. Lett. 2017; 19: 3219
- 12d Mei G.-J. Li D. Zhou G.-X. Shi Q. Cao Z. Shi F. Chem. Commun. 2017; 53: 10030
- 13 Fisk JS. Tepe JJ. J. Am. Chem. Soc. 2007; 129: 3058
- 14 CCDC 1570508 (3ae) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 15a Akiyama T. Chem. Rev. 2007; 107: 5744
- 15b Terada M. Chem. Commun. 2008; 4097
- 15c Terada M. Synthesis 2010; 1929
- 15d Yu J. Shi F. Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
- 15e Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014; 114: 9047
- 15f Wu H. He Y.-P. Shi F. Synthesis 2015; 47: 1990
For related reviews, see:
For selected examples, see:
For selected reviews, see:
For related reviews, see:
For selected examples, see:
For selected reviews, see:
For selected examples, see:
For some reviews, see: