Synthesis 2018; 50(02): 295-302
DOI: 10.1055/s-0036-1590929
paper
© Georg Thieme Verlag Stuttgart · New York

Brønsted Acid Catalyzed Dehydrative Nucleophilic Substitution of C3-Substituted 2-Indolylmethanols with Azlactones

Chen-Yu Bian
School of Chemistry and Material Science,Jiangsu Normal University, Xuzhou 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn
,
Dan Li
School of Chemistry and Material Science,Jiangsu Normal University, Xuzhou 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn
,
Qian Shi
School of Chemistry and Material Science,Jiangsu Normal University, Xuzhou 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn
,
Guang-Jian Mei*
School of Chemistry and Material Science,Jiangsu Normal University, Xuzhou 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn
,
Feng Shi*
School of Chemistry and Material Science,Jiangsu Normal University, Xuzhou 221116, P. R. of China   Email: fshi@jsnu.edu.cn   Email: guangjianM@jsnu.edu.cn
› Author Affiliations
We appreciate very much the financial support from NSFC (21372002 and 21232007), the Natural Science Foundation of Jiangsu Province (BK20160003 and BK20170227), PAPD, TAPP, and Undergraduate Student Project of Jiangsu province.
Further Information

Publication History

Received: 25 August 2017

Accepted after revision: 13 September 2017

Publication Date:
12 October 2017 (online)


Abstract

An efficient dehydrative nucleophilic substitution reaction of C3-substituted2-indolylmethanols with azlactones has been established. In the whole process, Brønsted acid was supposed to activate two substrates simultaneously. A series of structurally diversified indole derivatives were obtained in generally good yields and high diastereoselectivities (up to 86% yield, >95:5 dr). This protocol not only provides a new strategy for the direct synthesis of structurally diversified indole derivatives, but also enriches the chemistry of 2-indolylmethanols via dehydrative substitution reaction.

Supporting Information

 
  • References


    • For related reviews, see:
    • 1a Bandini M. Tragni M. Org. Biomol. Chem. 2009; 7: 1501
    • 1b Emer E. Sinisi R. Capdevila MG. Petruzziello D. De Vincentiis F. Cozzi PG. Eur. J. Org. Chem. 2011; 647
    • 1c Sundararaju B. Achard M. Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
    • 1d Kumar R. Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 1121
    • 1e Naredla RR. Klumpp DA. Chem. Rev. 2013; 113: 6905
    • 1f Chen L. Yin X.-P. Wang C.-H. Zhou J. Org. Biomol. Chem. 2014; 12: 6033
    • 1g Dryzhakov M. Richmond E. Moran J. Synthesis 2016; 48: 935
  • 2 Constable DJ. C. Dunn PJ. Hayler JD. Humphrey GR. Leazer JL. J. Linderman RJ. Lorenz K. Manley J. Pearlman BA. Wells A. Zaks A. Zhang TY. Green Chem. 2007; 9: 411
    • 3a Trost BM. Science 1991; 254: 1471
    • 3b Sheldon RA. Pure Appl. Chem. 2000; 72: 1233
    • 3c Wender PA. Verma VA. Paxton TJ. Pillow TH. Acc. Chem. Res. 2008; 41: 40
    • 3d Newhouse T. Baran PS. Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010

      For selected examples, see:
    • 4a Chen L. Zhu F. Wang C.-H. Zhou J. RSC Adv. 2013; 3: 19880
    • 4b Tao Z.-L. Zhang W.-Q. Chen D.-F. Adele A. Gong L.-Z. J. Am. Chem. Soc. 2013; 135: 9255
    • 4c Krautwald S. Sarlah D. Schafroth MA. Carreira EM. Science 2013; 340: 1065
    • 4d Wang P.-S. Zhou X.-L. Gong L.-Z. Org. Lett. 2014; 16: 976
    • 4e Xiao J. Zhao K. Loh T.-P. Chem. Commun. 2012; 48: 3548
    • 4f Xiao J. Org. Lett. 2012; 14: 1716
    • 4g Xiao J. Zhao K. Loh T.-P. Chem. Asian J. 2011; 6: 2890

      For selected reviews, see:
    • 5a Humphrey GR. Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 5b Bandini M. Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 5c Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
  • 6 For a recent review, see: Taber DF. Tirunahari PK. Tetrahedron 2011; 67: 7195

    • For related reviews, see:
    • 7a Mei G.-J. Shi F. J. Org. Chem. 2017; 82: 7695
    • 7b Zhu S. Xu B. Wang L. Xiao J. Chin. J. Org. Chem. 2016; 36: 1229
    • 7c Wang L. Chen Y.-Y. Xiao J. Asian J. Org. Chem. 2014; 3: 1036

      For selected examples, see:
    • 8a Guo Q.-X. Peng Y.-G. Zhang J.-W. Song L. Feng Z. Gong L.-Z. Org. Lett. 2009; 11: 4620
    • 8b Sun F.-L. Zeng M. Gu Q. You S.-L. Chem. Eur. J. 2009; 15: 8709
    • 8c Cozzi PG. Benfatti F. Zoli L. Angew. Chem. Int. Ed. 2009; 48: 1313
    • 8d Xiao J. Wen H. Wang L. Xu L. Hao Z. Shao C.-L. Wang C.-Y. Green Chem. 2016; 18: 1032
    • 8e Wang X. Liu J. Xu L. Hao Z. Wang L. Xiao J. RSC Adv. 2015; 5: 101713
    • 8f Wen H. Wang L. Xu L. Hao Z. Shao C.-L. Wang C.-Y. Xiao J. Adv. Synth. Catal. 2015; 357: 4023
    • 8g Liu J. Wang L. Wang X. Xu L. Hao Z. Xiao J. Org. Biomol. Chem. 2016; 14: 11510
    • 9a Qi S. Liu CY. Ding JY. Han FS. Chem. Commun. 2014; 50: 8605
    • 9b Liu CY. Han FS. Chem. Commun. 2015; 51: 11844
    • 9c Bera K. Schneider C. Chem. Eur. J. 2016; 22: 7074
    • 9d Bera K. Schneider C. Org. Lett. 2016; 18: 5660
    • 9e Zhang H.-H. Wang C.-S. Li C. Mei G.-J. Li Y. Shi F. Angew. Chem. Int. Ed. 2017; 56: 116
    • 9f Zhu Z.-Q. Shen Y. Liu J.-X. Tao J.-Y. Shi F. Org. Lett. 2017; 19: 1542

      For selected examples, see:
    • 11a Fisk JS. Tepe JJ. J. Am. Chem. Soc. 2007; 129: 3058
    • 11b Yu X.-Y. Chen J.-R. Wei Q. Cheng H.-G. Liu Z.-C. Xiao W.-J. Chem. Eur. J. 2016; 22: 6774
    • 11c Kikuchi J. Momiyama N. Terada M. Org. Lett. 2016; 18: 252
    • 11d Yamanaka M. Sakata K. Yoshioka K. Uraguchi D. Ooi T. J. Org. Chem. 2017; 82: 541
    • 12a Zhang Y.-C. Zhao J.-J. Jiang F. Sun S.-B. Shi F. Angew. Chem. Int. Ed. 2014; 53: 13912
    • 12b Zhao J.-J. Sun S.-B. He S.-H. Wu Q. Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
    • 12c Mei G.-J. Bian C.-Y. Li G.-H. Xu S.-L. Zheng W.-Q. Shi F. Org. Lett. 2017; 19: 3219
    • 12d Mei G.-J. Li D. Zhou G.-X. Shi Q. Cao Z. Shi F. Chem. Commun. 2017; 53: 10030
  • 13 Fisk JS. Tepe JJ. J. Am. Chem. Soc. 2007; 129: 3058
  • 14 CCDC 1570508 (3ae) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.