Synthesis 2018; 50(03): 599-606
DOI: 10.1055/s-0036-1591493
paper
© Georg Thieme Verlag Stuttgart · New York

Controlled and Efficient Stereoselective Synthesis of Oxindole-Appended 1-Aza-1,3-butadiene Derivatives via a One-Pot Buchwald–Hartwig Amination/Elimination Strategy

Kandapalam Arun Prasath Lingam*
a   Department of Chemistry, Kamaraj College, Thoothukudi, Tamil Nadu 628003, India   Email: prasatharun08@gmail.com
,
Periyasamy Amutha
a   Department of Chemistry, Kamaraj College, Thoothukudi, Tamil Nadu 628003, India   Email: prasatharun08@gmail.com
,
Paneerselvam Yuvaraj
b   CSIR-North East Institute of Science & Technology, Branch Laboratory, Lamphelpat, Imphal, Manipur 795004, India
,
Kodirajan Selvakumar*
c   Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu 625009, India   Email: selvaramkumar@gmail.com
› Author Affiliations
We gratefully acknowledge the financial assistance from DST-Fast Track Young Scientist Award (Ref. No. CS/FT95/2014) and SERB-EMEQ (Ref. No. SB-EMEQ-297/2014).
Further Information

Publication History

Received: 18 September 2017

Accepted after revision: 21 September 2017

Publication Date:
12 October 2017 (online)


Abstract

The enamine-free, stereoselective synthesis of oxindole-appended­ 1-aza-1,3-butadienes with an electron-withdrawing-group at the 3-position has been achieved in good yields from (Z)-β-bromo-substituted Morita–Baylis–Hillman (MBH) adducts of oxindoles via a one-pot Buchwald–Hartwig amination/elimination strategy. The versatility of the (Z)-β-bromo MBH adducts of oxindoles was further demonstrated by the formation of π-conjugated oxindole derivatives in typical palladium­-catalysed coupling reactions.

Supporting Information

 
  • References

    • 1a Monbaliu J.-CM. Masschelein KG. R. Stevens CV. Chem. Soc. Rev. 2011; 40: 4708
    • 1b Masson G. Lalli C. Benohoud M. Dagousset G. Chem. Soc. Rev. 2013; 42: 902
    • 1c Boger DL. Panek JS. Duff SR. J. Am. Chem. Soc. 1985; 107: 5745
    • 1d Boger DL. Coleman RS. J. Am. Chem. Soc. 1987; 109: 2717
    • 1e Boger DL. Zhang M. J. Am. Chem. Soc. 1991; 113: 4230
    • 1f Boger DL. Boyce CW. Labroli MA. Sehon CA. Jin Q. J. Am. Chem. Soc. 1999; 121: 54
    • 2a Palacios F. Vicario J. Aparicio D. Eur. J. Org. Chem. 2006; 2843
    • 2b Schnermann MJ. Boger DL. J. Am. Chem. Soc. 2005; 127: 15704
    • 2c Boger DL. Soenen DR. Boyce CW. Hedrick MP. Jin Q. J. Org. Chem. 2000; 65: 2479
    • 2d Boger DL. Hong J. Hikota M. Ishida M. J. Am. Chem. Soc. 1999; 121: 2471
    • 2e Xiong T. Zhang Q. Zhang Z. Liu Q. J. Org. Chem. 2007; 72: 8005
    • 3a Boger DL. Brotherton CE. J. Org. Chem. 1984; 49: 4050
    • 3b Panek JS. Zhu B. Tetrahedron Lett. 1996; 37: 8151
    • 3c Moisan L. Odermatt S. Gombosuren N. Carella A. Rebek JJr. Eur. J. Org. Chem. 2008; 1673
    • 4a Boger DL. Kasper AM. J. Am. Chem. Soc. 1989; 111: 1517
    • 4b Boger DL. Corbett WL. Wiggins JM. J. Org. Chem. 1990; 55: 2999
    • 4c Boger DL. Curran TT. J. Org. Chem. 1990; 55: 5439
    • 5a Palacios F. Herran E. Rubiales G. Alonso C. Aparicio D. Tetrahedron 2007; 63: 523
    • 5b Palacios F. Alonso C. Aparicio D. Rubiales G. J. Org. Chem. 2002; 67: 1941
    • 5c Shu C. Shen C.-H. Wang Y.-H. Li L. Li T. Lu X. Ye L.-W. Org. Lett. 2016; 18: 4630
    • 5d Manan RS. Kilaru P. Zhao P. J. Am. Chem. Soc. 2015; 137: 6136
    • 6a Alonso C. Gonzal M. Fuertes M. Rubiales G. Ezpeleta JM. Palacios F. J. Org. Chem. 2013; 78: 3858
    • 6b Most of the azadienes are prepared from the precursors of aromatic or aliphatic aldehydes, ketones and/or derived imines with electron-rich substrates. Hence, the preparation of 1-azadienes with 3- and 4-electron-withdrawing-group substituents remains a challenging task in organic synthesis.
    • 7a Louie J. Hartwig JF. Tetrahedron Lett. 1995; 36: 3609
    • 7b Driver MS. Hartwig JF. J. Am. Chem. Soc. 1996; 118: 7217
    • 7c Guram AS. Rennels RA. Buchwald SL. Angew. Chem., Int. Ed. Engl. 1995; 34: 1348
    • 7d Wolfe JP. Wagaw SL. J. Am. Chem. Soc. 1996; 118: 7215
    • 7e Castillo PR. Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 8a Barluenga J. Fernández MA. Aznar F. Valdés C. Chem. Eur. J. 2004; 10: 494
    • 8b Barluenga J. Fernández MA. Aznar F. Valdés C. Chem. Commun. 2004; 1400
    • 9a Kataoka T. Banno Y. Watanabe S. Iwamura T. Shimizu H. Tetrahedron Lett. 1997; 38: 1809
    • 9b Watanabe S. Yamamoto K. Itagaki Y. Kataoka T. J. Chem. Soc., Perkin Trans. 1 1999; 2053
    • 9c Li G. Wei H.-X. Caputo TD. Tetrahedron Lett. 2000; 41: 1
    • 9d Li G. Gao J. Wei H.-X. Enright M. Org. Lett. 2000; 2: 617
    • 9e Timmons C. Kattuboina A. Banerjee S. Li G. Tetrahedron 2006; 62: 7151
    • 9f Lee S. Hwang G.-S. Ryu DH. Synlett 2007; 59
    • 9g Wei H.-X. Jasoni RL. Hu J. Li G. Pare PW. Tetrahedron 2004; 60: 10233
    • 9h Liu Z. Zhang L. Sun J. Yan C. Chin. J. Chem. 2013; 31: 479
    • 9i Solaiselvi R. Shanmugam P. Mandal AB. Org. Lett. 2013; 15: 1186
    • 9j Senapati BK. Hwang GS. Lee S. Ryu DH. Angew. Chem. Int. Ed. 2009; 48: 4398
    • 10a Trost BM. Pinkerton AB. J. Am. Chem. Soc. 1999; 121: 1988
    • 10b Trost BM. Pinkerton AB. Angew. Chem. Int. Ed. 2000; 39: 360
    • 10c Zweifel GS. Nantz MH. Modern Organic Synthesis: An Introduction . W. H. Freeman and Company; New York: 2007: 290
    • 10d Walczak MC. Coleman RS. Org. Lett. 2005; 7: 2289
    • 10e Wori M. Kuroda S. Dekura F. J. Am. Chem. Soc. 1999; 121: 5591
    • 10f Denmark SE. Choi JY. J. Am. Chem. Soc. 1999; 121: 5821
    • 11a Basavaiah D. Muthukumaran K. Tetrahedron 1998; 54: 4943
    • 11b Sundar N. Bhat SV. Synth. Commun. 1998; 28: 2311
    • 11c Kumareswaran R. Vankar YD. Synth. Commun. 1998; 28: 2291
    • 11d Kabalka GW. Venkataiah B. Dong G. Org. Lett. 2003; 5: 3803
    • 11e Kim JM. Kim KH. Kim TH. Kim JN. Tetrahedron Lett. 2008; 49: 3248
    • 12a Kim SC. Gowrisankar S. Kim JN. Tetrahedron Lett. 2006; 47: 3463
    • 12b Liu Y.-L. Wang B.-L. Cao J.-J. Chen L. Zhang Y.-X. Wang C. Zhou J. J. Am. Chem. Soc. 2010; 132: 15176
  • 13 Selvakumar K. Lingam KA. P. Luxmi Varma RV. RSC Adv. 2014; 4: 36538
  • 14 CCDC 1052701 (6a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 15a Driver MS. Hartwig JF. J. Am. Chem. Soc. 1997; 119: 8232
    • 15b Hartwig JF. Richards S. Baranano D. Paul F. J. Am. Chem. Soc. 1996; 118: 3626
    • 15c Singh U. Strieter E. Blackmond D. Buchwald S. J. Am. Chem. Soc. 2002; 124: 14104
    • 15d Wagaw S. Rennels R. Buchwald S. J. Am. Chem. Soc. 1997; 119: 8451
    • 15e Alonso DA. Nájera C. Pacheco MC. J. Org. Chem. 2002; 67: 5588
    • 16a Li Z. Gelbaum C. Heaner WL. Fisk J. Jaganathan A. Holden B. Pollet P. Liotta CL. Org. Process Res. Dev. 2016; 20: 1489
    • 16b Melpolder JB. Heck RF. J. Org. Chem. 1976; 41: 265
    • 16c Dieck HA. Heck RF. J. Am. Chem. Soc. 1974; 96: 1133
    • 16d Werner EW. Mei T.-S. Burckle AJ. Sigman MS. Science 2012; 338: 1455
  • 17 Barnard C. Platinum Met. Rev. 2008; 52: 38
    • 18a Yao Q. Kinney EP. Yang Z. J. Org. Chem. 2003; 68: 7528
    • 18b Amini M. Begherzadeh M. Moradi-Shoeili Z. Boghaei DM. RSC Adv. 2012; 2: 12091
    • 18c de Vries AH. M. Parlevliet FJ. Schmieder-van de Vondervoort L. Mommers JH. M. Henderickx HJ. W. Walet MA. M. de Vries JG. Adv. Synth. Catal. 2002; 344: 996
    • 18d Okubo K. Shiral M. Yokoyama C. Tetrahedron Lett. 2002; 43: 7115
    • 18e Chandrasekar S. Narsihmulu C. Sultana SS. Reddy NR. Org. Lett. 2002; 4: 4399