Synlett, Table of Contents Synlett 2018; 29(05): 668-672DOI: 10.1055/s-0036-1591525 letter © Georg Thieme Verlag Stuttgart · New York Substoichiometric FeCl3 Activation of Propargyl Glycosides for the Synthesis of Disaccharides and Glycoconjugates Guosheng Sun a School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China Email: Jbzhang@chem.ecnu.edu.cn , Yue Wu a School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China Email: Jbzhang@chem.ecnu.edu.cn , Anqi Liu a School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China Email: Jbzhang@chem.ecnu.edu.cn , Saifeng Qiu a School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China Email: Jbzhang@chem.ecnu.edu.cn , Wan Zhang a School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China Email: Jbzhang@chem.ecnu.edu.cn , Zhongfu Wang b School of Life Sciences, Northwest University, Xi’an, 710069, P. R. of China , Jianbo Zhang * a School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China Email: Jbzhang@chem.ecnu.edu.cn › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract Glycosides as glycosyl donors using FeCl3 have been described. Under optimal reaction conditions, three kinds of propargyl glycosides were found to react with steroids and sugar-derived glycosyl acceptors to afford the corresponding disaccharides and glycoconjugates in good to excellent yields (66–91%). Meanwhile, the method can also realize one-pot synthesis of disaccharides, making it an effective, affordable, and green glycosylation procedure. Key words Key wordspropargyl glycosides - FeCl3 - disaccharides - glycoconjugates - glycosylation Full Text References References and Notes 1 Chiasson JL. Josse RG. Gomis R. Hanefeld M. Karasik A. Laakso M. Group S.-NT. R. Lancet 2002; 359: 2072 2 He BC. Gao JL. Luo X. Luo J. Shen J. Wang L. Zhou Q. Wang YT. Luu HH. Haydon RC. Wang CZ. Du W. Yuan CS. He TC. Zhang BQ. Int. J. Oncol. 2011; 38: 437 3 Mona MH. Omran NE. Mansoor MA. El-Fakharany ZM. Pharm. Biol. 2012; 50: 1144 4 Hamai S. J. Nanosci. Nanotechnol. 2001; 1: 177 5 Toole BP. Ghatak S. Misra S. Curr. Pharm. Biotechnol. 2008; 9: 249 6 Johnson MA. Cartmell J. Weisser NE. Woods RJ. Bundle DR. J. Biol. Chem. 2012; 287: 18078 7 Tsvetkov YE. Burg-Roderfeld M. Loers G. Arda A. Sukhova EV. Khatuntseva EA. Grachev AA. Chizhov AO. Siebert HC. Schachner M. Jimenez-Barbero J. Nifantiev NE. J. Am. Chem. Soc. 2012; 134: 426 8 Koeller KM. Wong CH. Chem. Rev. 2000; 100: 4465 9 Ragupathi G. Koide F. Livingston PO. Cho YS. Endo A. Wan Q. Spassova MK. Keding SJ. Allen J. Ouerfelli O. Wilson RM. Danishefsky SJ. J. Am. Chem. Soc. 2006; 128: 2715 10 Plante OJ. Palmacci ER. Seeberger PH. Adv. Carbohydr. Chem. Biochem. 2003; 58: 35 11 Li X. Zhu J. J. Carbohydr. Chem. 2012; 31: 284 12 McKay MJ. Nguyen HM. ACS Catal. 2012; 2: 15 63 13 Li X. Zhu J. Eur. J. Org. Chem. 2016; 2016: 4724 14 Zhu Y. Yu B. Angew. Chem. Int. Ed. 2011; 50: 8329 15 Adhikari S. Li X. Zhu J. J. Carbohydr. Chem. 2013; 32: 336 16 Dutta S. Sarkar S. Gupta SJ. Sen AK. Tetrahedron Lett. 2013; 54: 865 17 Chen X. Shen D. Wang Q. Yang Y. Yu B. Chem. Commun. 2015; 51: 13957 18 Hotha S. Kashyap S. J. Am. Chem. Soc. 2006; 128: 9620 19 Imagawa H. Kinoshita A. Fukuyama T. Yamamoto H. Nishizawa M. Tetrahedron Lett. 2006; 47: 4729 20 Sureshkumar G. Hotha S. Chem. Commun. 2008; 36: 4282 21 Mamidyala SK. Finn MG. J. Org. Chem. 2009; 74: 8417 22 Vidadala SR. Thadke SA. Hotha S. J. Org. Chem. 2009; 74: 9233 23 Vidadala SR. Hotha S. Chem. Commun. 2009; 18: 2505 24 Kayastha AK. Hotha S. Tetrahedron Lett. 2010; 51, 40: 5269 25 Kayastha AK. Hotha S. Chem. Commun. 2012; 48: 7161 26 Vidadala SR. Thadke SA. Hotha S. Kashyap S. J. Carbohydr. Chem. 2012; 31: 241 27 Thadke SA. Neralkar M. Hotha S. Carbohydr. Res. 2016; 430: 16 28 Sureshkumar G. Hotha S. Tetrahedron Lett. 2007; 48: 6564 29 Li J. Zhang X. Zhang M. Xiu H. He H. Carbohydr. Polym. 2015; 117: 917 30 Zhang L. Yu H. Wang P. Li Y. Bioresour. Technol. 2014; 151: 355 31 Zhou J. Chen H. Shan J. Li J. Yang G. Chen X. Xin K. Zhang J. Tang J. J. Carbohydr. Chem. 2014; 33: 313 32 Cornil J. Guerinot A. Reymond S. Cossy J. J. Org. Chem. 2013; 78: 10273 33 Shiva Kumar K. Siddi Ramulu M. Rajesham B. Kumar NP. Voora V. Kancha RK. Org. Biomol. Chem. 2017; 15: 4468 34 Shi JL. Zhang JC. Wang BQ. Hu P. Zhao KQ. Shi ZJ. Org. Lett. 2016; 18: 1238 35 Zhao J. Xu Z. Oniwa K. Asao N. Yamamoto Y. Jin T. Angew. Chem. Int. Ed. 2016; 55: 259 36 Ma L. Li W. Xi H. Bai X. Ma E. Yan X. Li Z. Angew. Chem. Int. Ed. 2016; 55: 10410 37 Jang SS. Youn SW. Org. Biomol. Chem. 2016; 14: 2200 38 Zhu Y. Li C. Zhang J. She M. Sun W. Wan K. Wang Y. Yin B. Liu P. Li J. Org. Lett. 2015; 17: 3872 39 Ruengsangtongkul S. Taprasert P. Sirion U. Jaratjaroonphong J. Org. Biomol. Chem. 2016; 14: 8493 40 Qiu S. Zhang W. Sun G. Wang Z. Zhang J. ChemistrySelect 2016; 1: 4840 41 Qiu S. Sun G. Ding Z. Chen H. Zhang J. Synlett 2017; 28: 2024 42 Garcia BA. Gin DY. J. Am. Chem. Soc. 2000; 122: 4269 43 Mensah EA. Azzarelli JM. Nguyen HM. J. Org. Chem. 2009; 74: 1650 44 Uchiro H. Kurusu N. Mukaiyama T. Isr. J. Chem. 1997; 37: 87 45 Senthilkumar S. Prasad SS. Kumar PS. Baskaran S. Chem. Commun. 2014; 50: 1549 46 Tatina M. Yousuf SK. Mukherjee D. Org. Biomol. Chem. 2012; 10: 5357 47 Rajaganesh R. MohanDas T. Carbohydr. Res. 2012; 357: 139 48 Ashokkumar V. Siva A. Org. Biomol. Chem. 2017; 15: 2551 49 Liu W. Zheng Y. Kong X. Heinis C. Zhao Y. Wu C. Angew. Chem. Int. Ed. 2017; 56: 4458 50 Dash AK. Madhubabu T. Yousuf SK. Raina S. Mukherjee D. Carbohyd. Res. 2017; 438: 1 51 Bellucci MC. Ghilardi A. Volonterio A. Org. Biomol. Chem. 2011; 9: 8379 52 Mitachi K. Mohan P. Siricilla S. Kurosu M. Chemistry 2014; 20: 4554 53 Venukumar P. Sudharani C. Sridhar PR. Chem. Commun. 2014; 50: 2218 54 Yadav JS. Yadav NN. Gupta MK. Srivastava N. Subba Reddy BV. Monatsh. Chem. 2014; 145: 517 55 Typical Experimental Procedure Typically, to a mixture of 2,3,4,6-tetra-O-benzyl-α-d-glucopyranoside (1a, 0.1 mmol, 58 mg) and methyl 2,3,4-tri-O-benzoyl-α-d-glucopyranoside (2a, 0.05 mmol, 25 mg) in a round-bottom flask (5 mL) under nitrogen atmosphere. The FeCl3 (10 mg, 0.06 mmol) catalyst and anhydrous CH3CN solvent (6 mL) was added to another round-bottom flask. Take the solution of FeCl3(1.5 mL) to the former round-bottom flask, and the reaction was stirred at 60 °C for 15 h. After completion of the reaction (monitored by TLC), the organic phase was condensed under vacuum to get crude product, which was purified by silica gel column chromatography (PE/EtOAc = 6:1) to get 3a in 83% yield. All new compounds were characterized by 1H NMR,13C NMR, and MS. Spectral and analytical data were in good agreement with the desired structures. 56 Selected Spectral Data – Compound 3a Colorless oil, α-anomer:1H NMR (500 MHz, CDCl3): δ = 8.00 (dd, J = 8.3, 1.2 Hz, 2 H), 7.97 (dd, J = 8.3, 1.2 Hz, 2 H), 7.91–7.85 (m, 2 H), 7.55–7.49 (m, 2 H), 7.46–7.28 (m, 24 H), 7.22 (m, 1 H), 7.15 (dd, J = 7.6, 1.7 Hz, 2 H), 6.16 (t, J = 9.4 Hz, 1 H), 5.55 (t, J = 9.9 Hz, 1 H), 5.24 (q, J = 3.5 Hz, 2 H), 4.93 (d, J = 11.0 Hz, 1 H), 4.84 (d, J = 11.0 Hz, 1 H), 4.80 (d, J = 11.0 Hz, 1 H), 4.78 (d, J = 12.5 Hz, 1 H), 4.76 (d, J = 3.5 Hz, 1 H), 4.65 (d, J = 12.2 Hz, 1 H), 4.56 (d, J = 12.1 Hz, 1 H), 4.47 (d, J = 11.0 Hz, 1 H), 4.40 (d, J = 12.1 Hz, 1 H), 4.36–4.31 (m, 1 H), 3.98 (t, J = 9.3 Hz, 1 H), 3.90–3.84 (m, 2 H), 3.67–3.62 (m, 2 H), 3.60 (dd, J = 11.0, 2.1 Hz, 1 H), 3.56 (dd, J = 9.7, 3.5 Hz, 1 H), 3.52 (dd, J = 10.7, 1.9 Hz, 1 H), 3.46 (s, 3 H). β-Anomer: 1H NMR (500 MHz, CDCl3): δ = 8.00–7.85 (m, 6 H), 7.52–7.12 (m, 29 H), 6.17 (t, J =9.8 Hz, 1 H), 5.47 (t, J =9.9 Hz, 1 H), 5.25 (dd, J =10.2, 3.6 Hz, 1 H), 5.20 (d, J =3.6 Hz, 1 H), 5.05 (d, J =10.8 Hz, 1 H), 4.91 (d, J =10.9 Hz, 1 H), 4.80 (d, J =10.8 Hz, 1 H), 4.76 (d, J = 10.9 Hz, 1 H), 4.68 (d, J =10.9 Hz, 1 H), 4.53 (d, J =11.5 Hz, 1 H), 4.50 (d, J =11.6 Hz, 1 H), 4.47 (d, J =7.8 Hz, 1 H), 4.43 (d, J =12.2 Hz, 1 H), 4.41–4.34 (m, 1 H), 4.12 (dd, J =10.8, 2.0 Hz, 1 H), 3.81 (dd, J = 10.9, 7.6 Hz, 1 H), 3.66–3.63 (m, 2 H), 3.61 (d, J = 6.0 Hz, 1 H), 3.58 (d, J = 9.1 Hz, 1 H), 3.46–3.43 (m, 2 H), 3.37 (s, 3 H). ESI-MS: m/z calcd for C62H60O14 Na [M + Na+]: 1051.39; found: 1051.25. Supplementary Material Supplementary Material Supporting Information