RSS-Feed abonnieren
DOI: 10.1055/s-0036-1591548
Copper-Catalyzed Enantioselective Coupling between Allylboronates and Phosphates Using a Phenol–Carbene Chiral Ligand: Asymmetric Synthesis of Chiral Branched 1,5-Dienes
This work was supported by Grants-in-Aid for Scientific Research (B) (No. 15H03803), JSPS to H.O. and by CREST and ACT-C, JST to M.S.Publikationsverlauf
Received: 19. Dezember 2017
Accepted after revision: 12. Februar 2018
Publikationsdatum:
20. März 2018 (online)
Abstract
Details of the Cu-catalyzed enantioselective allyl–allyl coupling reaction between allylboronates and (Z)-allylic phosphates using a new chiral N-heterocyclic carbene (NHC) ligand containing a phenolic hydroxy group are presented. The copper catalysis delivers enantioenriched chiral 1,5-dienes with a tertiary stereogenic center. Compatibility with various functional groups and the use of earth-abundant and relatively low-toxicity copper as a metal are attractive features of this protocol. The utility of the chiral phenol–NHC ligand for enantioselective copper catalysis with organoboron compounds is demonstrated and enantiodiscrimination models are discussed.
Key words
asymmetric catalysis - allylic substitution - synthetic methods copper catalysis - organoboron compoundsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591548.
- Supporting Information
-
References
- 1a Breitmaier E. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones . Wiley-VCH; Weinheim: 2006
- 1b refs 5–7 and 9; and references cited therein.
- 2a van Tamelen EE. Schwartz MA. J. Am. Chem. Soc. 1965; 87: 3277
- 2b Stork G. Grieco PA. Gregson M. Tetrahedron Lett. 1969; 1393
- 2c Grieco PA. Masaki Y. J. Org. Chem. 1974; 39: 2135
- 2d Negishi E. Valente LF. Kobayashi M. J. Am. Chem. Soc. 1980; 102: 3298
- 2e Negishi E. Liou S.-Y. Xu C. Huo S. Org. Lett. 2002; 4: 261
- 3a Trost BM. Keinan E. Tetrahedron Lett. 1980; 21: 2595
- 3b Godschalx J. Stille JK. Tetrahedron Lett. 1980; 21: 2599
- 3c Nakamura H. Bao M. Yamamoto Y. Angew. Chem. Int. Ed. 2001; 40: 3208 ; Angew. Chem. 2001, 113, 3308
- 3d Karlström AS. E. Bäckvall J.-E. Chem. Eur. J. 2001; 7: 1981
- 3e Jimeńez-Aquino A. Flegeau EF. Schneider U. Kobayashi S. Chem. Commun. 2011; 47: 9456
- 3f Yuan Q. Yao K. Liu D. Zhang W. Chem. Commun. 2015; 51: 11834
- 4 Diner C. Szabó KJ. J. Am. Chem. Soc. 2017; 139: 2
- 5a Zhang P. Brozek LA. Morken JP. J. Am. Chem. Soc. 2010; 132: 10686
- 5b Zhang P. Le H. Kyne RE. Morken JP. J. Am. Chem. Soc. 2011; 133: 9716
- 5c Brozek LA. Ardolino MJ. Morken JP. J. Am. Chem. Soc. 2011; 133: 16778
- 5d Ardolino MJ. Morken JP. J. Am. Chem. Soc. 2014; 136: 7092
- 5e Ardolino MJ. Morken JP. Tetrahedron 2015; 71: 6409
- 5f Le H. Kyne RE. Brozek LA. Morken JP. Org. Lett. 2013; 15: 1432
- 5g Wang X. Wang X. Han Z. Wang Z. Ding K. Angew. Chem. Int. Ed. 2017; 56: 1116 ; Angew. Chem. 2017, 129, 1136
- 6 Hornillos V. Pérez M. Fañanás-Mastral M. Feringa BL. J. Am. Chem. Soc. 2013; 135: 2140
- 7 Hamilton JY. Hauser N. Sarlah D. Carreira EM. Angew. Chem. Int. Ed. 2014; 53: 10759 ; Angew. Chem. 2014, 126, 10935
- 8 Yasuda Y. Ohmiya H. Sawamura M. Angew. Chem. Int. Ed. 2016; 55: 10816 ; Angew. Chem. 2016, 128, 10974
- 9 For the synthesis of chiral 1,5-diene derivatives through Cu-catalyzed enantioselective coupling with diboron, allene, and allylic phosphate, see: Meng F. McGrath KP. Hoveyda AH. Nature 2014; 513: 367
- 10a Alexakis A. Bäckvall JE. Krause N. Pàmies O. Diéguez M. Chem. Rev. 2008; 108: 2796
- 10b Harutyunyan SR. den Hartog T. Geurts K. Minnaard AJ. Feringa BL. Chem. Rev. 2008; 108: 2824
- 10c Shintani R. Synthesis 2016; 48: 1087
- 11a Shintani R. Takatsu K. Takeda M. Hayashi T. Angew. Chem. Int. Ed. 2011; 50: 8656 ; Angew. Chem. 2011, 123, 8815
- 11b Gao F. Carr JL. Hoveyda AH. Angew. Chem. Int. Ed. 2012; 51: 6613 ; Angew. Chem. 2012, 124, 6717
- 11c Jung B. Hoveyda AH. J. Am. Chem. Soc. 2012; 134: 1490
- 11d Takeda M. Takatsu K. Shintani R. Hayashi T. J. Org. Chem. 2014; 79: 2354
- 11e Shi Y. Jung B. Torker S. Hoveyda AH. J. Am. Chem. Soc. 2015; 137: 8948
- 11f ref. 10c.
- 12a Harada A. Makida Y. Sato T. Ohmiya H. Sawamura M. J. Am. Chem. Soc. 2014; 136: 13932
- 12b Ohmiya H. Zhang H. Shibata S. Harada A. Sawamura M. Angew. Chem. Int. Ed. 2016; 55: 4777 ; Angew. Chem. 2016, 128, 4855
- 12c Hojoh K. Ohmiya H. Sawamura M. J. Am. Chem. Soc. 2017; 139: 2184
- 13a Hameury S. Frémont P. Braunstein P. Chem. Soc. Rev. 2017; 46: 632
- 13b Pape F. Teichert JF. Eur. J. Org. Chem. 2017; 4206
- 13c Peris E. Chem. Rev. 2017; in press ; DOI: 10.1021/acs.chemrev.6b00695
- 14a Shido Y. Yoshida M. Tanabe M. Ohmiya H. Sawamura M. J. Am. Chem. Soc. 2012; 134: 18573
- 14b Hojoh K. Shido Y. Ohmiya H. Sawamura M. Angew. Chem. Int. Ed. 2014; 53: 4954 ; Angew. Chem. 2014, 126, 5054
- 14c Ohmiya H. Yokobori U. Makida Y. Sawamura M. J. Am. Chem. Soc. 2010; 132: 2895
- 14d Nagao K. Yokobori U. Makida Y. Ohmiya H. Sawamura M. J. Am. Chem. Soc. 2012; 134: 8982
- 15 Use of the allyl-9-BBN reagent instead of 1a under the conditions for Table 1, entry 12 resulted in a decrease in both enantioselectivity (87% ee) and product yield (30%), but with the exclusive regioselectivity (γ/α >99:1) unchanged.
- 16 Scholl M. Ding S. Lee CW. Grubbs RH. Org. Lett. 1999; 1: 953
- 17 The absolute configuration of 3ae and 3ah was determined by comparison of the specific rotations with the values reported previously; see ref. 5aThe absolute configuration of 3au was determined by Mosher’s NMR spectroscopic method. The absolute configuration of the other products was assigned by consideration of the stereochemical pathway; see ref. 8.
- 18 The linear α-substitution product was the (E)-isomer.
- 19 Data for Schemes 4 and 5 are taken from ref. 8.
- 20a Yoshikai N. Zhang S.-L. Nakamura E. J. Am. Chem. Soc. 2008; 130: 12862
- 20b Yamanaka M. Kato S. Nakamura E. J. Am. Chem. Soc. 2004; 126: 6287
- 21 Rapid formation of a tetravalent borate (B) was confirmed by 11B NMR spectroscopy; see ref. 8.
- 22 Zhang P. Roundtree IA. Morken JP. Org. Lett. 2012; 14: 1416
See also:
For selected papers, see:
For reviews on Cu-catalyzed allylic substitutions, see:
For Cu-catalyzed enantioselective allylic substitutions using organoboron reagents and oxygen-functionalized NHC chiral ligands, see:
See also:
For our previous work, see:
For functionalized NHC ligands in asymmetric catalysis, see:
See also:
Nakamura and co-workers conducted DFT calculations on the mechanism of the reaction between [MeCu(CN)Li] and allyl acetate to form a square planar, four-coordinate (γ-σ-enyl)copper(III) species [(π-en-σ-yl)copper(III) complex]. Our mechanistic proposal is in accord with Nakamura’s mechanism, in which the (γ-σ-enyl)copper(III) species is not in equilibrium with the corresponding (α-σ-enyl)copper(III) species; the regioselectivity is determined at the oxidative addition step as a consequence of the asymmetric nature of MeCuCN–. Our proposed mechanism is in accord with Nakamura’s mechanism in that the reaction proceeds through oxidative addition of a cuprate to form the (γ-σ-enyl)copper(III) species followed by reductive elimination. However, the coordination number of copper in the allylcopper(III) complex is different by virtue of bidentate coordination of the anionic phenol–NHC chiral ligand (L). The strongly electron-donating NHC coordination should render the π-en coordination weaker, making the allylic 1,3-copper migration in the allylcopper(III) complex more feasible. See:
For the effect of a σ-donor ligand, see: