Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(15): 2924-2929
DOI: 10.1055/s-0036-1591558
DOI: 10.1055/s-0036-1591558
special topic
Organocatalytic Electrochemical C–H Lactonization of Aromatic Carboxylic Acids
We thank the Natural Science Foundation of China (21390400, 21502198 and 21521002) for financial support. S.L. is supported by the National Program of Top-notch Young Professionals and Chinese Academy of Sciences (QYZDJ-SSW-SLH023).Further Information
Publication History
Received: 17 January 2018
Accepted after revision: 08 March 2018
Publication Date:
28 March 2018 (online)
§ These authors contributed equally.
Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis
Abstract
An electrochemical strategy has been developed for radical arene carbon–oxygen bond formation. This reaction utilizes DDQ as a redox mediator, with inexpensive glassy carbon electrodes to facilitate an intramolecular lactonization of biphenyl-2-carboxylic acid derivatives via aromatic carboxyl radical substitution to give 6H-benzo[c]chromen-6-ones.
Key words
electrochemical oxidation - aromatic radical substitution - lactonization - 6H-benzo[c]chromen-6-one - redox mediatorSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591558.
- Supporting Information
-
References
- 1a Gaoni Y. Mechoulam R. J. Am. Chem. Soc. 1964; 86: 1646
- 1b Zhang Y.-J. Abe T. Yang C.-R. Kouno I. J. Nat. Prod. 2001; 64: 1527
- 1c Orabi MA. A. Taniguchi S. Yoshimura M. Yoshida T. Kishino K. Sakagami H. Hatano T. J. Nat. Prod. 2010; 73: 870
- 1d Pfundstein B. El Desouky SK. Hull WE. Haubner R. Erben G. Owen RW. Phytochemistry 2010; 71: 1132
- 1e Bringmann G. Menche D. Acc. Chem. Res. 2001; 34: 615
- 1f Bringmann G. Gulder T. Gulde TA. M. Beruning M. Chem. Rev. 2011; 111: 563
- 2a Togo H. Muraki T. Yokoyama M. Tetrahedron Lett. 1995; 36: 7089
- 2b Furuyama S. Togo H. Synlett 2010; 2325
- 3 Kenner GW. Murray MA. Tylor CM. B. Tetrahedron 1957; 1: 259
- 4 Li Y. Ding Y.-J. Wang J.-Y. Su Y.-M. Wang X.-S. Org. Lett. 2013; 15: 2574
- 5 Gallardo-Donaire J. Martin R. J. Am. Chem. Soc. 2013; 135: 9350
- 6 Wang Y. Gulevich AV. Gevorgyan V. Chem. Eur. J. 2013; 19: 15836
- 7 Dai J.-J. Xu W.-T. Wu Y.-D. Zhang W.-M. Gong Y. He X.-P. Zhang X.-Q. Xu H.-J. J. Org. Chem. 2015; 80: 911
- 8 Wang X. Gallardo-Donaire J. Martin R. Angew. Chem. Int. Ed. 2014; 53: 11084
- 9 Ramirez NP. Bosque I. Gonzalez-Gomez JC. Org. Lett. 2015; 17: 4550
- 10 Yang Q. Jia Z.-B. Li L.-J. Zhang L. Luo S.-Z. Org. Chem. Front. 2018; 5: 237
- 11 Matlack AS. Introduction to Green Chemistry . Marcel Dekker; New York: 2001
- 12a Yoshida JL. Karaoka K. Horcajada R. Nagaki A. Chem. Rev. 2008; 108: 2265
- 12b Ogibin YN. Elison MN. Nikishin GI. Russ. Chem. Rev. 2009; 78: 89
- 12c Yan M. Kawamata Y. Baran PS. Chem. Rev. 2017; 117: 13230
- 13 Kolbe H. Justus Liebigs Ann. Chem. 1849; 69: 257
- 14 Rabjohn N. Flasch GW. J. Org. Chem. 1981; 46: 4082
- 15a Linstead RP. Lunt JC. Weedon BC. L. J. Chem. Soc. 1950; 3333
- 15b Seko M. Yomiyama A. Isoya T. Hydrocarbon Process. 1979; 117
- 16 Eberson L. Nyberg K. Tetrahedron 1976; 32: 2185
- 17 Zhang S. Li L.-J. Wang H.-Q. Li Q. Liu W.-M. Xu K. Zeng C.-C. Org. Lett. 2018; 20: 252
- 18 Francke R. Little RD. Chem. Soc. Rev. 2014; 43: 2492
- 19 Brinker UH. Tyner MIII. Jones WM. Synthesis 1975; 671
- 20a Utley JH. P. Rozenberg GG. J. Appl. Electrochem. 2003; 33: 525
- 20b Luca OR. Wang T. Konezny SJ. Batista VS. Crabtree RH. New J. Chem. 2011; 35: 998
- 20c Chiba K. Arakawa T. Tada M. J. Chem. Soc., Perkin Trans. 1 1998; 2939
- 20d Wendlandt AE. Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638
- 20e Kang L.-S. Xiao H.-L. Zeng C.-C. Hu L.-M. Little RD. J. Electroanal. Chem. 2016; 767: 13
- 20f Anson CW. Stahl SS. J. Am. Chem. Soc. 2017; 139: 18472
- 21 Griffin JD. Zeller MA. Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 11340
For reviews, see:
For reviews, see: