Synthesis 2018; 50(12): 2407-2415
DOI: 10.1055/s-0036-1591559
paper
© Georg Thieme Verlag Stuttgart · New York

Safe and Metal-Free Synthesis of 1-Alkenyl Aryl Sulfides and Their Sulfones from Thiiranes and Diaryliodonium Salts

Jun Dong
State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: jxxu@mail.buct.edu.cn
,
Jiaxi Xu*
State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. of China   Email: jxxu@mail.buct.edu.cn
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (Nos. 21572017 and 21772010).
Further Information

Publication History

Received: 22 January 2018

Accepted after revision: 05 March 2018

Publication Date:
04 April 2018 (online)


Abstract

A series of 1-alkenyl aryl sulfides was synthesized from thiiranes and diaryliodonium salts in tetrahydrofuran in the presence of potassium tert-butoxide. The proposed reaction mechanism involves generation of benzynes from the diaryliodonium salts in the presence of the base. Then, nucleophilic attack of the benzynes by thiiranes, followed by hydrogen abstraction and ring opening of the generated thiiranium intermediates, provides the sulfides. These sulfides were further oxidized with performic acid to the corresponding sulfones. The current method provides a metal-free and safe method for the preparation of 1-alkenyl aryl sulfides and their sulfones.

Supporting Information

 
  • References

    • 1a Meng D. Chen W. Zhao W. J. Nat. Prod. 2007; 70: 824
    • 1b Szilágyi Á. Fenyvesi F. Mayercsik O. Pelyvás IS. Bácskay I. Fehér P. Váradi J. Vecsernyés M. Herczegh P. J. Med. Chem. 2006; 49: 5626
    • 2a Schaumann E. Top. Curr. Chem. 2007; 274: 1
    • 2b Yang ZH. Yang SY. Haroone MS. He W. Xu JX. Tetrahedron 2017; 73: 3338
    • 3a Bratz M. Bullock WH. Overman LE. Takemoto T. J. Am. Chem. Soc. 1995; 117: 5958
    • 3b Sasmal PK. Maier ME. Org. Lett. 2002; 4: 1271
    • 4a Chou S.-SP. Wey S.-J. J. Org. Chem. 1990; 55: 1270
    • 4b Surasani SR. Peddinti RK. Tetrahedron Lett. 2011; 52: 4615
    • 5a Narasaka K. Hayashi Y. Shimadzu H. Niihata S. J. Am. Chem. Soc. 1992; 114: 8869
    • 5b Paquette LA. Sun L.-Q. Watson TJ. N. Friedrich D. Freeman BT. J. Org. Chem. 1997; 62: 8155
    • 6a Fernandez de la Pradilla R. Tortosa M. Viso A. Top. Curr. Chem. 2007; 275: 103
    • 6b Liu Z. Mehta SJ. Lee K.-S. Grossman B. Qu H. Gu X. Nichol GS. Hruby LJ. J. Org. Chem. 2012; 77: 1289
  • 7 Miller RD. Hassig R. Tetrahedron Lett. 1985; 26: 2395
    • 8a Liu Z. Rainier JD. Org. Lett. 2005; 7: 131
    • 8b Macnaughtan ML. Gary JB. Gerlach DL. Johnson MJ. A. Kampf JW. Organometallics 2009; 28: 2880
  • 9 Di Giuseppe A. Castrarlenas R. Perez-Torrente JJ. Crucianelli M. Polo V. Sancho R. Lahoz FJ. Oro LA. J. Am. Chem. Soc. 2012; 134: 8171 ; and references cited therein
  • 10 Wang Z.-L. Tang R.-Y. Luo P.-S. Deng C.-L. Zhong P. Li J.-H. Tetrahedron 2008; 64: 10670
  • 11 Singh R. Raghuvanshi DS. Singh KN. Org. Lett. 2013; 15: 4202
  • 12 Kao H.-L. Lee C.-F. Org. Lett. 2011; 13: 5204 ; and references cited therein
  • 13 Cristau HJ. Chabaud B. Labaudiniere R. Christol H. J. Org. Chem. 1986; 51: 875
  • 14 Silveira CC. Santos PC. S. Mendes SR. Braga AL. J. Organomet. Chem. 2008; 693: 3787
  • 15 Lin Y.-M. Lu G.-P. Wang G.-X. Yi W.-B. J. Org. Chem. 2017; 82: 382
  • 16 Taniguchi T. Fujii T. Idota A. Ishibashi H. Org. Lett. 2009; 11: 3298
  • 17 Kokin K. Tsuboi S. Motoyoshiya J. Hayashi S. Synthesis 1996; 637
  • 18 Harada T. Karasawa A. Oku A. J. Org. Chem. 1986; 51: 842
  • 19 Schmink JR. Dockrey SA. B. Zhang TY. Chebet N. van Venrooy A. Sexton M. Lew SI. Chou S. Okazaki A. Org. Lett. 2016; 18: 6360
  • 20 Nakayam J. Takeue S. Hoshino M. Tetrahedron Lett. 1984; 25: 2679
    • 21a Xu JX. Top. Heterocycl. Chem. 2016; 41: 311
    • 21b Zhou C. Xu JX. Prog. Chem. 2012; 24: 238
    • 23a Dong J. Xu JX. Org. Biomol. Chem. 2017; 15: 836
    • 23b Chen XP. Xu JX. Tetrahedron Lett. 2017; 58: 1651
    • 23c Li SQ. Chen XP. Xu JX. Tetrahedron 2018; 74: 1613
    • 24a Stang PJ. J. Org. Chem. 2003; 68: 2997
    • 24b Aradi K. Tóth BL. Tolnai GL. Novák Z. Synlett 2016; 27: 1456
    • 24c Bielawski M. Malmgren J. Pardo LM. Wikmark Y. Olofsson B. ChemistryOpen 2014; 3: 19
    • 24d Rousseaux S. Vrancken E. Campagne J.-M. Angew. Chem. Int. Ed. 2012; 51: 2
    • 25a Kitamura T. Yamane M. Inoue K. Todaka M. Fukatsu N. Meng Z. Fujiwara Y. J. Am. Chem. Soc. 1999; 121: 11674
    • 25b Cadogan JI. G. Rowley AG. Sharp JT. Sledzinsk B. Wilson NH. J. Chem. Soc., Perkin Trans. 1 1975; 1072
  • 26 Wang M. Huang Z. Org. Biomol. Chem. 2016; 14: 10185
  • 27 Bielawski M. Aili D. Olofsson B. J. Org. Chem. 2008; 73: 4602
  • 28 Zhang N. Yang DS. Wei W. Yuan L. Cao YJ. Wang H. RSC Adv. 2015; 5: 37013
  • 29 Nie G. Deng XC. Lei X. Hu QQ. Chen YF. RSC Adv. 2016; 6: 75277
  • 30 Chen J. Mao JC. Zheng Y. Liu DF. Rong GW. Yan H. Zhang C. Shi DQ. Tetrahedron 2015; 71: 5059
  • 31 Hopkins PB. Fuchs PL. J. Org. Chem. 1978; 43: 1208
  • 32 Das B. Lingaiah M. Damodar K. Bhunia N. Synthesis 2011; 2941
  • 33 Dana D. Das TK. Kumar I. Davalos AR. Mark KJ. Ramai D. Chang EJ. Talele TT. Kumar S. Chem. Biol. Drug Des. 2012; 80: 489
  • 34 Llamas T. Arrayás RG. Carretero CJ. Org. Lett. 2006; 8: 1795