Synlett 2018; 29(10): 1358-1361
DOI: 10.1055/s-0036-1591561
letter
© Georg Thieme Verlag Stuttgart · New York

A Simple Aluminum Bromide-Promoted Diastereoselective Synthesis of Panduratin A Derivatives

Chun Keng Thy
a   Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
,
Sudtha Murthy
a   Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
,
a   Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
,
Marzieh Yaeghoobi
b   Health Technology Incubation Center, Shahroud University of Medical Sciences, Shahroud, Iran
,
Noorsaadah Abd. Rahman
a   Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
,
Chin Fei Chee*
c   Nanotechnology and Catalysis Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia   Email: cheechinfei@um.edu.my
› Author Affiliations
This research was supported by the University of Malaya Research Grants (BKP044-2017 and RG392-17AFR).
Further Information

Publication History

Received: 19 January 2018

Accepted after revision: 13 March 2018

Publication Date:
11 April 2018 (online)


Abstract

A facile diastereoselective synthesis of panduratin A derivatives using commercially available aluminum(III) bromide is reported. The effect of substituents on the Diels–Alder reaction of various trans-chalcones with (E)-ocimene was investigated. A series of panduratin A derivatives were prepared in moderate to good yields.

Supporting Information

 
  • References and Notes

  • 1 Tuntiwachwuttikul P. Pancharoen O. Reutrakul V. Byrne LT. Aust. J. Chem. 1984; 37: 449
  • 2 Yoshikawa M. Morikawa T. Funakoshi K. Ochi M. Pongpiriyadacha Y. Matsuda H. Heterocycles 2008; 75: 1639
    • 3a Yun J.-M. Kwon H. Mukhtar H. Hwang J.-K. Planta Med. 2005; 71: 501
    • 3b Yun J.-M. Kweon M.-H. Kwon H. Hwang J.-K. Mukhtar H. Carcinogenesis 2006; 27: 1454
    • 3c Kirana C. Jones GP. Record IR. McIntosh GH. J. Nat. Med. 2007; 61: 131
    • 3d Cheah S.-C. Appleton DR. Lee S.-T. Lam M.-L. Hadi AH. A. Mustafa MR. Molecules 2011; 16: 2583
    • 3e Majumdar ID. Devanabanda A. Fox B. Schwartzman J. Cong H. Porco Jr. JA. Weber HC. Biochem. Biophys. Res. Commun. 2011; 416: 397
    • 3f Lai S.-L. Cheah S.-C. Wong P.-F. Noor SM. Mustafa MR. PLoS One 2012; 7: e38103
    • 3g Cheah S.-C. Lai S.-L. Lee S.-T. Hadi AH. A. Mustafa MR. ­Molecules 2013; 18: 8764
    • 3h Lai S.-L. Wong P.-F. Lim T.-K. Lin Q. Mustafa MR. Proteomics 2015; 15: 1608
    • 5a Park KM. Choo JH. Sohn JH. Lee SH. Hwang J.-K. Food Sci. Biotechnol. 2005; 14: 286
    • 5b Song MS. Shim JS. Gwon SH. Lee CW. Kim HS. Hwang J.-K. Food Sci. Biotechnol. 2008; 17: 1357
    • 5c Rukayadi Y. Han S. Yong D. Hwang J.-K. Biol. Pharm. Bull. 2010; 33: 1489
  • 6 Lai SL. Wong PF. Lim TK. Lin Q. Mustafa MR. Phytomedicine 2015; 22: 203
  • 7 Salama SM. AlRashdi AS. Abdulla MA. Hassandarvish P. Bilgen M. BMC Complementary Altern. Med. 2013; 13: 279
    • 8a Yanti Hwang J.-K. Planta Med. 2010; 76: 1181
    • 8b Yanti Hwang J.-K. Planta Med. 2013; 79: 860
  • 9 Cheenpracha S. Karalai C. Ponglimanont C. Subhadhirasakul S. Tewtrakul S. Bioorg. Med. Chem. 2006; 14: 1710
  • 10 Kiat TS. Pippen R. Yusof R. Ibrahim H. Norzulaani K. Abd Rahman N. Bioorg. Med. Chem. Lett. 2006; 16: 3337
  • 11 Chee CF. Abdullah I. Buckle MJ. C. Abd Rahman N. Tetrahedron Lett. 2010; 51: 495
  • 12 Cong H. Becker CF. Elliott SJ. Grinstaff MW. Porco Jr. JA. J. Am. Chem. Soc. 2010; 132: 7514
  • 13 Li X. Han J. Jones AX. Lei X. J. Org. Chem. 2016; 81: 458
  • 14 Corbett JL. Weavers RT. Synth. Commun. 2008; 38: 489
  • 15 Majetich G. Zhang Y. J. Am. Chem. Soc. 1994; 116: 4979
  • 16 Pasfield LA. de la Cruz L. Ho J. Coote ML. Otting G. McLeod MD. Asian J. Org. Chem. 2013; 2: 60
  • 17 Cong H. Ledbetter D. Rowe GT. Caradonna JP. Porco Jr. JA. J. Am. Chem. Soc. 2008; 130: 9214
  • 18 Panduratin A Derivatives 3a–r; General ProcedureA 1.0 M solution of AlBr3 in CH2Br2 (30 mol%) was added to a solution of the appropriate trans-chalcone (1 equiv) in anhyd toluene or CH2Cl2 (2 mL/mmol) at r.t. (28 °C) under N2. (E)-Ocimene (5 equiv) was added, and the mixture was stirred at r.t. for 24 h or until all the chalcone was consumed. The mixture was then poured into ice–water acidified with 3 N aq HCl to pH 2–3. The resulting mixture was extracted with EtOAc, and the organic phase was dried (Na2SO4) and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, 5–20% EtOAc–hexane).[3-Methyl-2-(3-methylbut-2-en-1-yl)-6-phenylcyclohex-3-en-1-yl](phenyl)methanone (3)Pale brown solid; yield: 124 mg (72%); mp 90–92 °C. 1H NMR (400 MHz, CDCl3): δ = 1.38 (s, 6 H), 1.70 (s, 3 H), 1.97–2.09 (m, 2 H), 2.11–2.18 (m, 1 H), 2.34–2.39 (m, 2 H), 3.36 (td, J = 10.5, 6.4 Hz, 1 H), 4.08 (dd, J = 10.5, 5.0 Hz, 1 H), 4.74 (t, J = 6.9 Hz, 1 H), 5.41 (br s, 1 H), 6.99 (t, J = 6.9 Hz, 1 H), 7.09–7.14 (m, 4 H), 7.32 (t, J = 7.8 Hz, 2 H), 7.40 (t, J = 7.3 Hz, 1 H), 7.79 (d, J = 7.8 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 17.7, 22.8, 25.6, 28.7, 35.0, 36.9, 42.8, 50.3, 121.3, 123.7, 125.7, 127.0, 127.9, 128.3, 128.4, 131.9, 132.5, 136.5, 137.4, 146.3, 200.6. HRMS (ESI): m/z [M + H]+ calcd for C25H29O: 345.2218; found: 345.2225.(2-Chlorophenyl)[3-methyl-2-(3-methylbut-2-en-1-yl)-6-phenylcyclohex-3-en-1-yl]methanone (3a)Yellow oil; yield: 32 mg (17%). 1H NMR (400 MHz, CDCl3): δ = 1.50 (s, 3 H), 1.58 (s, 3 H), 1.68 (s, 3 H), 2.11–2.22 (m, 2 H), 2.25–2.32 (m, 2 H), 2.39–2.46 (m, 1 H), 3.34 (td, J = 9.8, 7.1 Hz, 1 H), 3.96 (dd, J = 10.2, 4.2 Hz, 1 H), 4.97 (t, J = 6.6 Hz, 1 H), 5.40 (br s, 1 H), 7.04–7.08 (m, 1 H), 7.14–7.30 (m, 8 H). 13C NMR (100 MHz, CDCl3): δ = 18.0, 23.1, 25.8, 29.0, 33.8, 37.4, 40.6, 55.3, 121.0, 123.6, 126.0, 126.6, 127.7, 128.2, 129.4, 130.8, 131.5, 131.5, 132.0, 136.9, 139.0, 145.7, 202.7. HRMS (ESI): m/z [M + H]+ calcd for C25H28 35ClO: 379.1829; found: 379.1831.