Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(13): 1717-1722
DOI: 10.1055/s-0036-1591578
DOI: 10.1055/s-0036-1591578
letter
An Efficient One-Pot Multicomponent Synthesis of Tetracyclic Quinazolino[4,3-b]quinazolines by Sequential C–N Bond Formation and Copper-Mediated Aerobic Oxidative Cyclization
Further Information
Publication History
Received: 06 February 2018
Accepted after revision: 05 April 2018
Publication Date:
04 May 2018 (online)
Abstract
An efficient one-pot synthesis of quinazolino[4,3-b]quinazoline derivatives has been accomplished, starting from 2-(2-bromophenyl)quinazolin-4(3H)-one, aldehydes, and various nitrogen sources under aerobic conditions. The multicomponent protocol is mediated by copper(I) salts and involves amination of 2-(2-bromophenyl)quinazolin-4(3H)-one, followed by condensation with the aldehyde and an oxidative cyclization to give the target compounds in moderate to good yields.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591578.
- Supporting Information
-
References
- 1a Michael JP. Nat. Prod. Rep. 2008; 25: 166
- 1b Michael JP. Nat. Prod. Rep. 2007; 24: 223
- 1c Michael JP. Nat. Prod. Rep. 2005; 22: 627
- 2a Göker H. Özden S. Yilidz S. Boykin DW. Eur. J. Med. Chem. 2005; 40: 1062
- 2b Malecki N. Carato P. Rigo B. Goossens J.-F. Houssin R. Bailly C. Hénichart J.-P. Bioorg. Med. Chem. 2014; 12: 641
- 3 Colotta V. Catarzi D. Varano F. Lenzi O. Filacchioni G. Costagli G. Galli A. Ghelardini C. Galeotti N. Gratteri P. Sgrignani J. Deflorian F. Moro S. J. Med. Chem. 2006; 49: 6015
- 4a Maggio B. Daidone G. Raffa D. Plescia S. Mantione L. Catena Cutuli VA. Mangano NG. Caruso A. Eur. J. Med. Chem. 2001; 36: 737
- 4b Laddha SL. Bhatnagar SP. Bioorg. Med. Chem. 2009; 17: 6796
- 4c Aly MM. Mohamed YA. El-Bayouki KA. M. Basyouni WM. Abbas SY. Eur. J. Med. Chem. 2010; 45: 3365
- 4d Khan I. Ibrar A. Abbas N. Saeed A. Eur. J. Med. Chem. 2014; 76: 193
- 4e Ugale VG. Bari SB. Eur. J. Med. Chem. 2014; 80: 447
- 4f Maurya HK. Verma R. Alam S. Pandey S. Pathak V. Sharma S. Srivastava KK. Negi AS. Gupta A. Bioorg. Med. Chem. Lett. 2013; 23: 5844
- 5 Latermann AB. Chen D. McCutcheon K. Hoffman G. Frias E. Ruddy D. Rakiec D. Korn J. McAllister G. Stegmeier F. Meyer MJ. Sharma SV. Cancer Res. 2015; 75: 4937
- 6 Chen C.-H. Statt S. Chiu C.-L. Thai P. Arif M. Adler KB. Wu R. Am. J. Respir. Crit. Care Med. 2014; 190: 1127
- 7 Ayala-Ramirez M. Feng L. Habra MA. Dickson PV. Perreier N. Phan A. Waguespack S. Patel S. Jimenez C. Cancer 2012; 118: 2804
- 8 Tseng MC. Chu Y.-W. Tasi H.-P. Lin C.-M. Hwang J. Chu Y.-H. Org. Lett. 2011; 13: 920
- 9 Dzierzbicka K. Trzonokowski P. Sewerynek PL. Myśliwski A. J. Med. Chem. 2003; 46: 978
- 10 Li H. Li W. Spannenberg A. Baumann W. Neumann H. Beller M. Wu X.-F. Chem. Eur. J. 2014; 20: 8541
- 11a Utkina NK. Denisenko V. Tetrahedron Lett. 2007; 48: 4445
- 11b Mason JJ. Janosik T. Bergman J. Synthesis 2009; 3642
- 12 Kshirsagar UA. Puranik VG. Argade NP. J. Org. Chem. 2010; 75: 2702
- 13a Alexandre FR. Berecibar A. Wrigglesworth R. Besson T. Tetrahedron 2003; 59: 1413
- 13b Adepu R. Sunke R. Meda CL. T. Ramudu D. Krishna GR. Reddy CM. Deora GS. Parsa KV. L. Pal M. Chem. Commun. 2013; 49: 190
- 13c Saha B. Kumar R. Maulik PR. Kundu B. Tetrahedron Lett. 2006; 47: 2765
- 13d Cai Q. Li Z. Wei J. Fu L. Ha C. Pei D. Ding K. Org. Lett. 2010; 12: 1500
- 13e Tyagi V. Khan S. Bajpai V. Gauniyal HM. Kumar B. Chauhan PM. S. J. Org. Chem. 2012; 77: 1414
- 14 Reddy MB. Reddy PG. Shailaja M. Manjula A. Rao TP. RSC Adv. 2016; 6: 98297
- 15 Xu C. Jia FC. Zhou Z.-W. Zheng S.-J. Li H. Wu A.-X. J. Org. Chem. 2016; 81: 3000
- 16 Quinazolino[4,3-b]quinazolines 4a–r; General Procedures Method 1 (NaN3 as the nitrogen source): CuI (10 mol%), l-proline (20 mol %), and NaN3 (3 mmol) were added to a solution of quinazolinone 1 (1.66 mmol) in DMSO (5 mL) at r.t., and a blue complex formed. The appropriate aldehyde (2 mmol) was added, and the mixture was stirred at 80 °C for 12 h until the reaction was complete (TLC). The mixture was cooled then partitioned between ice-cold H2O (25 mL) and EtOAc (30 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc (2 × 30 mL). The organic layers were combined, washed with brine, dried (Na2SO4), filtered, and concentrate in vacuo. The residue was purified by column chromatography (silica gel). Method 2 (aq NH3 as the nitrogen source): CuI (10mol %), l-proline (20 mol %), 25% aq NH3 (1 mL), K2CO3 (5 mmol), and the appropriate aldehyde (2 mmol) were added to a solution of quinazolinone 1 22 (1.66 mmol) in DMSO (5 mL), and mixture was stirred at 100 °C for 6 h in a sealed tube. The mixture was then heated for 18 h open to the air until the reaction was complete (TLC). The mixture was cooled to r.t. then partitioned between ice-cold H2O (25 mL) and EtOAc (30 mL). The organic layer was separated, and the aqueous layer was extracted with EtOAc (2 × 30 mL). The organic layers were combined, washed with brine, dried (Na2SO4), filtered, and concentrated in vacuo. The residue was purified by column chromatography (silica gel). 6-(4-Bromophenyl)-8H-quinazolino[4,3-b]quinazolin-8-one (4g) White solid; yield: 482 mg (72%); mp 270–272 °C. IR (KBr): 1696 (C=O) cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.81 (d, J = 8.0 Hz, 1 H), 8.24 (d, J = 7.9 Hz, 1 H), 7.88 (d, J = 3.5 Hz, 2 H), 7.85–7.78 (m, 2 H), 7.66–7.63 (m, 1 H), 7.62–7.59 (m, 2 H), 7.52–7.50 (m, 1 H), 7.49 (d, J = 8.2 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 160.54 (C=O), 148.96, 146.92, 146.15, 144.21, 142.28, 135.96, 135.58, 133.70, 131.40, 128.62, 127.99, 127.40, 127.18, 126.52, 126.01, 124.01, 121.42, 120.29. LC-MS (positive-ion mode): m/z = 402 [M + H]+; HRMS (EI): m/z [M + H]+ calcd for C21H13BrN3O: 402.02404; found: 402.02365.6-(4-Nitrophenyl)-8H-quinazolino[4,3-b]quinazolin-8-one (4i) Yellow solid; yield: 246 (43%); mp 288–290 °C. IR (KBr): 1692 (C=O) cm –1. 1H NMR (400 MHz, CDCl3): δ = 8.85 (d, J = 8.0 Hz, 1 H), 8.35 (d, J = 8.7 Hz, 2 H), 8.23 (d, J = 7.9 Hz, 1 H), 7.91 (d, J = 2.3 Hz, 2 H), 7.85 (d, J = 6.5 Hz, 2 H), 7.75 (d, J = 8.7 Hz, 2 H), 7.69 (t, J = 7.3 Hz, 1 H), 7.55–7.50 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 160.33 (C=O), 147.97, 147.81, 146.92, 145.70, 143.27, 141.97, 135.89, 133.91, 129.39, 128.26, 127.94, 127.37, 126.83, 126.13, 123.50, 121.39, 119.97. LC-MS (positive-ion mode): m/z = 369 [M + H]+; HRMS (EI): m/z [M + H]+ calcd for C21H13N4O3: 369.0988; found: 369.0986.
- 17 Sang P. Xie Y. Zou J. Zhang Y. Org. Lett. 2012; 14: 3894
- 18 Kotipalli T. Kavala V. Janreddy D. Bandi V. Kuo CW. Yao CF. Eur. J. Org. Chem. 2016; 1182
- 19a Li B. Zhang B. Zhang X. Fan X. J. Org. Chem. 2016; 81: 9530
- 19b Guo S. Li Y. Tao L. Zhang W. Fan X. RSC Adv. 2014; 4: 59289
- 20a Jia F.-C. Zhou Z.-W. Xu C. Cai Q. Li D.-K. Wu A.-X. Org. Lett. 2015; 17: 4236
- 20b Kim Y. Kumar MR. Park N. Yeo Y. Lee S. J. Org. Chem. 2011; 76: 9577
- 20c Rai B. Kumar P. Kumar A. RSC Adv. 2015; 5: 85915
- 21 Markiewicz JT. Wiest O. Helquist P. J. Org. Chem. 2010; 75: 4887-4890