Synthesis 2018; 50(12): 2329-2336
DOI: 10.1055/s-0036-1591580
feature
© Georg Thieme Verlag Stuttgart · New York

Enabling the Rearrangement of Unactivated Allenes to 1,3-Dienes by Use of a Palladium (0)/Boric Acid System

Yassir Al-Jawaheri
a   School of Science, Department of Chemistry, Loughborough University, LE11 3TU, U.K.   Email: M.C.Kimber@lboro.ac.uk
b   College of Education, Department of Chemistry, Mosul University, Iraq
,
Matthew Turner
a   School of Science, Department of Chemistry, Loughborough University, LE11 3TU, U.K.   Email: M.C.Kimber@lboro.ac.uk
,
a   School of Science, Department of Chemistry, Loughborough University, LE11 3TU, U.K.   Email: M.C.Kimber@lboro.ac.uk
› Author Affiliations
This work was financially supported by Loughborough University. Y.A. acknowledges the Ministry of Higher Education of Iraq for funding.
Further Information

Publication History

Received: 28 February 2018

Accepted after revision: 04 April 2018

Publication Date:
17 May 2018 (online)


Abstract

A redox neutral rearrangement of an allene to a 1,3-diene by means of a unique palladium hydride complex is reported. The palladium hydride complex is generated from a simple Pd0 source and boric acid [B(OH)3], which is typically identified as a waste by-product of the Suzuki–Miyaura reaction. A mechanism for this transformation using this novel palladium hydride complex is presented; using a direct sample loop and flow injection ESI-HRMS analysis we have detected and identified key π-allylpalladium complexes that support the addition of the palladium hydride complex to the allene.

Supporting Information

 
  • References

    • 1a Deagostino A. Prandi C. Zavattaro C. Venturello P. Eur. J. Org. Chem. 2006; 2463
    • 1b Nicolaou KC. Synder SA. Montagnon T. Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
    • 1c Negishi E.-I. Huang Z. Wang G. Mohan S. Wang C. Hattori H. Acc. Chem. Res. 2008; 41: 1474
    • 1d De Paolis M. Chataigner I. Maddaluno J. Top. Curr. Chem. 2012; 327: 87
    • 2a Kobayashi M. Higuchi K. Murakami N. Tajima H. Aoki S. Tetrahedron Lett. 1997; 38: 2859
    • 2b For a review see: Serhan CN. Nature (London) 2014; 510: 92
    • 2c Morris Kupchan S. Komoda Y. Court WA. Thomas GJ. Smith RM. Karim A. Gilmore CJ. Haltiwanger RC. Bryan RF. J. Am. Chem. Soc. 1972; 94: 1354
  • 3 For a comprehensive review on the synthesis of 1,3-dienes see: Science of Synthesis. Vol. 46. Georg Thieme Verlag; Stuttgart: 2009
  • 4 Ghogare AA. Green A. Chem. Rev. 2016; 116: 9994

    • For representative examples see
    • 5a Luo SX. Cannon JS. Taylor BL. H. Engle KM. Houk KN. Grubbs RH. J. Am. Chem. Soc. 2016; 138: 14039
    • 5b Laio L. Guo R. Zhao X. Angew. Chem. Int. Ed. 2017; 56: 3201
    • 5c Jiang L. Cao P. Wang M. Chen B. Wang B. Liao J. Angew. Chem. Int. Ed. 2016; 55: 13854
    • 5d Srinnivas V. Nakajima Y. Ando W. Sato K. Shimada S. J. Organomet. Chem. 2016; 809: 57
    • 5e Sleet CE. Tambar UK. Angew. Chem. Int. Ed. 2017; 56: 5536
    • 5f Iwasaki T. Min X. Fukuoka A. Kuniysau H. Kambe N. Angew. Chem. Int. Ed. 2016; 55: 5550
    • 5g Yang X.-H. Dong VM. J. Am. Chem. Soc. 2017; 139: 1774
    • 6a Hirai K. Suzuki H. Moro-Oka Y. Ikawa T. Tetrahedron Lett. 1980; 21: 3413
    • 6b Shiotsuki M. Ura Y. Ito T. Wada K. Kondo T. Mitsudo T. J. Organomet. Chem. 2004; 689: 3168
    • 6c Shintani R. Duan W.-L. Park S. Hayashi T. Chem. Commun. 2006; 3646
    • 6d Yasui H. Yorimitsu H. Oshima K. Synlett 2006; 1783
    • 7a Crandall JK. Paulson DR. J. Am. Chem. Soc. 1966; 88: 4302
    • 7b Bloch R. Le Perchec P. Conia J.-M. Angew. Chem. Int. Ed. 1970; 9: 798
    • 7c Jones MJr. Hendrick ME. Hardie JA. J. Org. Chem. 1971; 36: 3061
    • 7d Patrick TB. Haynie EC. Probst WJ. Tetrahedron Lett. 1971; 12: 423
    • 7e Lehric F. Hopf H. Tetrahedron Lett. 1987; 28: 2697
    • 7f Meier H. Schmitt M. Tetrahedron Lett. 1989; 30: 5873
    • 8a Jacobs TL. Johnson RN. J. Am. Chem. Soc. 1960; 82: 6397
    • 8b Werkert E. Leftin MH. Michelotti EL. J. Org. Chem. 1985; 50: 1122
    • 8c Sanz R. Miguel D. Martínez A. Gohain M. García-García P. Fernández-Rodríguez MA. Álvarez E. Rodríguez F. Eur. J. Org. Chem. 2010; 7027
  • 9 Fe2(CO)9 can convert tetramethylallene into its 1,3-diene via oxidative treatment of the complex, see: Ben-Shoshan R. Pettit R. J. Am. Chem. Soc. 1987; 89: 2231
    • 10a Shimizu I. Tsuji J. Chem. Lett. 1984; 233
    • 10b Shimizu I. Sugiura T. Tsuji J. J. Org. Chem. 1985; 50: 537
    • 10c Al-Masum M. Yamamoto Y. J. Am. Chem. Soc. 1998; 120: 3809
    • 11a Ting C.-M. Hsu Y.-L. Liu R.-S. Chem. Commun. 2012; 48: 6577
    • 11b Chen J.-M. Chang C.-J. Ke Y.-J. Liu R.-S. J. Org. Chem. 2014; 79: 4306
    • 11c Brown TJ. Robertson BD. Widenhoefer RA. J. Organomet. Chem. 2014; 758: 25
  • 12 Al-Jawaheri Y. Kimber MC. Org. Lett. 2016; 18: 3502
  • 13 Vantourout JC. Miras HN. Isidro-Llobet A. Sproules S. Watson AJ. B. J. Am. Chem. Soc. 2017; 139: 4769
  • 14 Benzoic acid was utilised to generate a H–PdII–OBz complex in the hydroalkoxylation of alkynes see: Kadota I. Lutete LM. Shibuya A. Yamamoto Y. Tetrahedron Lett. 2001; 42: 6207
  • 15 See the Supporting Information for details of the preparation of the allenyl substrates.
  • 16 Benzoic acid pK a = 4.20; boric acid pK a = 9.24.
    • 17a Qian R. Guo H. Liao Y. Guo Y. Ma S. Angew. Chem. Int. Ed. 2005; 44: 4771

    • For a review on the use of ESI-MS to probe reactive intermediates see:
    • 17b Zhu W. Yuhan Y. Zhou P. Zeng L. Wang H. Tang L. Guo B. Chen B. Molecules 2012; 17: 11507

    • Also see:
    • 17c Wright VE. Castro-Gomez F. Jurneczko E. Reynolds JC. Poulton A. Christie SD. R. Barran P. Bo C. Creaser CS. Int. J. Ion. Mobility Spectrom. 2013; 16: 61
  • 18 Please see the Supporting Information for details.
    • 19a Tamura R. Rui M. Saegusa K. Kakihana M. Oda D. J. Org. Chem. 1987; 52: 4121
    • 19b Dubbaka R. Vogel P. Tetrahedron 2005; 61: 1523