Synthesis 2018; 50(15): 3048-3058
DOI: 10.1055/s-0036-1591599
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Conversion of Tertiary Propargylamides into Imidazoles via Hydroamination–Cyclization

Alexander Safrygin
Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation   Email: m.krasavin@spbu.ru
,
Elena Krivosheyeva
Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation   Email: m.krasavin@spbu.ru
,
Dmitry Dar’in
Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation   Email: m.krasavin@spbu.ru
,
Mikhail Krasavin*
› Author Affiliations
This research was supported by the Russian Scientific Foundation (project grant 14-50-00069). A.S. is grateful to Saint Petersburg State University for a postdoctoral fellowship.
Further Information

Publication History

Received: 15 April 2018

Accepted: 30 May 2018

Publication Date:
25 June 2018 (online)


Abstract

A method to convert tertiary N-propargylamides into 1,2,4-trisubstituted imidazoles using ammonium chloride and zinc triflate as the catalyst is reported. The method is convenient, practical and employs conventional heating. It is also applicable to N-propargyl lactams and tends to populate the so-called ‘lead-like’ chemistry space.

Supporting Information

 
  • References

  • 1 Address correspondence to Mikhail Krasavin at the Laboratory of Chemical Pharmacology, Institute of Chemistry, Saint Petersburg State University, 26 Universitetskyi prospekt, Peterhof 198504, Russian Federation.
  • 2 Privileged Structures in Drug Discovery: Medicinal Chemistry and Synthesis. Yet L. John & Wiley and Sons; Hoboken: 2018
  • 3 Zhang L. Peng X.-M. Damu GL. V. Geng R.-X. Zhou C.-H. Med. Res. Rev. 2014; 34: 340
  • 4 Molina P. Tarraga A. Oton F. Org. Biomol. Chem. 2012; 10: 1711
  • 5 Heffron TP. J. Med. Chem. 2016; 59: 10030
  • 6 Hucke O. Gelb MH. Verlinde CL. M. J. Buckner FS. J. Med. Chem. 2005; 48: 5415
  • 7 Pierard GE. Vroome V. Borgers M. Cauwenbergh G. Pierard-Franchimont C. Curr. Top. Pharmacol. 2006; 10: 59
  • 8 Koga H. Nanjoh Y. Makimura K. Tsuboi R. Med. Mycol. 2009; 47: 640
  • 9 Peng XM. Cai GX. Zhou CH. Curr. Top. Med. Chem. 2013; 13: 1963
  • 10 Baumann M. Baxendale IR. Ley SV. Nikbin N. Beilstein J. Org. Chem. 2011; 7: 442
  • 11 Vessally E. Soleimani-Amiri S. Hosseinian A. Edjlali L. Bekhradnia A. RSC Adv. 2017; 7: 7079
  • 12 Pews-Davtyan A. Beller M. Chem. Commun. 2011; 47: 2152
  • 13 Pews-Davtyan A. Tillack A. Schmole A.-C. Ortinau S. Frech MJ. Rolfs A. Beller M. Org. Biomol. Chem. 2010; 8: 1149
    • 14a Baiga T. Downes M. Evans R. Kluge A. Lagu B. Miura M. Panigrahi SK. Patane M. Samajdar S. Senaiar R. Takahashi T. PCT Int. Appl WO2016057658A1, 2016 ; Chem. Abstr. 2016, 164, 495851
    • 14b Downes M. Evans RM. Kluge A. Lagu B. Miura M. Panigrahi SK. Patane M. Samajdar S. Senaiar R. Takahashi T. PCT Int. Appl WO2017062468A1, 2017 ; Chem. Abstr. 2017, 166, 442387.
  • 15 Wang Y. Liu W.-J. Yin L. Li H. Chen Z.-H. Zhu D.-X. Song X.-Q. Cheng Z.-Z. Song P. Wang Z. Li Z.-G. Bioorg. Med. Chem. Lett. 2018; 28: 974
  • 16 Wang Y. Xing Q. PCT Int. Appl WO2017211246, 2017 ; Chem. Abstr. 2017, 168, 76583.
  • 17 Bohets H. McGowan C. Mannens G. Schroeder N. Edwards-Swanson K. Shapiro A. J. Ocul. Pharmacol. Ther. 2011; 27: 187
  • 18 Nadin A. Hattotuwagama C. Churcher I. Angew. Chem. Int. Ed. 2012; 51: 1114
  • 19 Lipinski CA. Lombardo F. Dominy BW. Feeney PJ. Adv. Drug Delivery Rev. 1997; 23: 3