Subscribe to RSS
DOI: 10.1055/s-0036-1591744
Photoredox Synthesis of Arylhydroxylamines from Carboxylic Acids and Nitrosoarenes
D.L. thanks the European Union for a Career Integration Grant (PCIG13-GA-2013-631556) and EPSRC for a research grant (EP/P004997/1).Publication History
Received: 03 November 2017
Accepted after revision: 01 December 2017
Publication Date:
02 January 2018 (online)
Published as part of the Bürgenstock Special Section 2017 Future Stars in Organic Chemistry
Abstract
Hydroxylamines are found in biologically active compounds and serve as building blocks for the preparation of nitrogen-containing molecules. Here the direct conversion of carboxylic acids into the corresponding alkylhydroxylamines using organo-photoredox catalysis is reported. The process relies in the generation of alkyl radicals via photoinduced oxidation-decarboxylation and their following reaction with nitrosoarenes. We have successfully applied this method to the late-stage modification of complex and biologically active acids and applied it in novel radical cascade processes.
Key words
hydroxylamines - radical addition - nitrosoarenes - late-stage functionalization - radical cascade - photoredoxSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591744.
- Supporting Information
-
References
- 1a The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids. Rappoport Z. Liebman JF. Wiley; Chichester: 2008
- 1b Ashani Y. Silman I. Hydroxylamines and Oximes: Biological Properties and Potential Uses as Therapeutic Agents. In The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids. Rappoport Z. Liebman JF. Wiley; Chichester: 2008. Chap. 13
- 1c Race NJ. Hazelden IR. Faulkner A. Bower JF. Chem. Sci. 2017; 8: 5248
- 1d Gao H. Zhou Z. Kwon D.-H. Coombs J. Jones S. Behnke NE. Ess DH. Kürti L. Nat. Chem. 2017; 9: 681
- 2 Studer A. Curran DP. Angew. Chem. Int. Ed. 2015; 55: 58
- 3a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 3b Skubi KL. Blum TR. Yoon TP. Chem. Rev. 2016; 116: 10035
- 3c Romero NA. Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 3d Hopkinson MN. Sahoo B. Li J.-L. Glorius F. Chem. Eur. J. 2014; 20: 3874
- 4 Xuan J. Zhang Z.-G. Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
- 5a Reina DF. Duncey EM. Morcillo SP. Svejstrup TD. Popescu MV. Douglas JJ. Sheikh NS. Leonori D. Eur. J. Org. Chem. 2017; 2108
- 5b Davies J. Sheikh NS. Leonori D. Angew. Chem. Int. Ed. 2017; 56: 13361
- 5c Davies J. Svejstrup TD. Reina DF. Sheikh NS. Leonori D. J. Am. Chem. Soc. 2016; 138: 8092
- 5d Davies J. Booth SG. Essafi S. Dryfe RW. A. Leonori D. Angew. Chem. Int. Ed. 2015; 54: 14017
- 6a Yamamoto H. Kawasaki M. Bull. Chem. Soc. Jpn. 2007; 80: 595
- 6b Yamamoto H. Momiyama N. Chem. Commun. 2005; 7 3514
- 6c Zuman P. Shah B. Chem. Rev. 1994; 94: 1621
- 7a Kanegawa S. Karasawa S. Maeyama M. Nakano M. Koga N. J. Am. Chem. Soc. 2008; 130: 3079
- 7b Forrester AR. Fullerton JD. McConnachie G. J. Chem. Soc., Perkin Trans. 1 1983; 1759
- 7c Dhayalan V. Sämann C. Knochel P. Chem. Commun 2015; 51: 3239
- 7d Li Y. Chakrabarty S. Studer A. Angew. Chem. Int. Ed. 2015; 54: 3587
- 8a Momiyama N. Yamamoto H. Org. Lett. 2002; 4: 3579
- 8b Momiyama N. Yamamoto H. J. Am. Chem. Soc. 2003; 125: 6038
- 8c Payette JN. Yamamoto H. J. Am. Chem. Soc. 2008; 130: 12276
- 8d Yanagisawa A. Izumib Y. Takeshita S. Synlett 2009; 716
- 8e Yanagisawa A. Takeshita S. Izumi Y. Yoshida K. J. Am. Chem. Soc. 2010; 132: 5328
- 9a Bøgevig A. Sundén H. Córdova A. Angew. Chem. Int. Ed. 2004; 43: 1109
- 9b Kano T. Ueda M. Takai J. Maruoka K. J. Am. Chem. Soc. 2006; 128: 6046
- 9c Palomo C. Vera S. Velilla I. Mielgo A. Gómez-Bengoa E. Angew. Chem. Int. Ed. 2007; 46: 8054
- 9d Shen K. Liu X. Wang G. Lin L. Feng X. Angew. Chem. Int. Ed. 2011; 50: 4684
- 10 Wong FT. Patra PK. Seayad J. Zhang Y. Ying JY. Org. Lett. 2008; 10: 2333
- 11 Ayhan P. Demir AS. Adv. Synth. Catal. 2011; 353: 624
- 12a Gingras BA. Water WA. J. Chem. Soc. 1954; 1920
- 12b Inamoto N. Simamura O. J. Org. Chem. 1958; 23: 408
- 12c Hosogai T. Inamoto N. Okazaki R. J. Chem. Soc., Chem. Commun. 1971; 3399
- 12d Corey EJ. Gross AW. J. Org. Chem. 1985; 50: 5391
- 12e Gui J. Pan C.-M. Jin Y. Qin T. Lo JC. Lee BJ. Spergel SH. Mertzman ME. Pitts WJ. Cruz TE. L. Schmidt MA. Darvatkar N. Natarajan SR. Baran PS. Science 2015; 348: 886
- 13a Fisher DJ. Shaum JB. Mills CL. Read de Alaniz J. Org. Lett. 2016; 18: 5074
- 13b Fisher DJ. Burnett GL. Velasco R. Read de Alaniz J. J. Am. Chem. Soc. 2015; 137: 11614
- 14 van der Werf A. Hribersek M. Selander N. Org. Lett. 2017; 19: 2374
- 15 Studer A. Chem. Eur. J. 2001; 7: 1159
- 16 See SI for more information.
- 17 Vleeschouwer FD. Speybroeck VV. Waroquier M. Geerlings P. Proft FD. Org. Lett. 2007; 9: 2721
- 18a Weber M. Fischer H. Helv. Chim. Acta 1998; 81: 770
- 18b Wong MW. Pross A. Radom L. J. Am. Chem. Soc. 1994; 116: 6284
- 19a Nicewicz DA. Nguyen TM. ACS Catal. 2014; 4: 355
- 19b Margrey KA. Nicewicz DA. Acc. Chem. Res. 2016; 49: 1997
- 19c Fukuzumi S. Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059