Synthesis 2018; 50(04): 821-830
DOI: 10.1055/s-0036-1591744
paper
© Georg Thieme Verlag Stuttgart · New York

Photoredox Synthesis of Arylhydroxylamines from Carboxylic Acids and Nitrosoarenes

Jacob Davies
a   School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK   Email: daniele.leonori@manchester.ac.uk
,
Lucrezia Angelini
a   School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK   Email: daniele.leonori@manchester.ac.uk
,
Mohammed A. Alkhalifah
b   Department of Chemistry, Faculty of Science, King Faisal University, P.O. Box 380, Al-Ahsa 3192, Saudi Arabia   Email: nsheikh@kfu.edu.sa
,
Laia Malet Sanz
c   Eli Lilly and Company Limited, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
,
Nadeem S. Sheikh*
b   Department of Chemistry, Faculty of Science, King Faisal University, P.O. Box 380, Al-Ahsa 3192, Saudi Arabia   Email: nsheikh@kfu.edu.sa
,
a   School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK   Email: daniele.leonori@manchester.ac.uk
› Author Affiliations
D.L. thanks the European Union for a Career Integration Grant (PCIG13-GA-2013-631556) and EPSRC for a research grant (EP/P004997/1).
Further Information

Publication History

Received: 03 November 2017

Accepted after revision: 01 December 2017

Publication Date:
02 January 2018 (online)


Published as part of the Bürgenstock Special Section 2017 Future Stars in Organic Chemistry

Abstract

Hydroxylamines are found in biologically active compounds and serve as building blocks for the preparation of nitrogen-containing molecules. Here the direct conversion of carboxylic acids into the corresponding alkylhydroxylamines using organo-photoredox catalysis is reported. The process relies in the generation of alkyl radicals via photoinduced oxidation-decarboxylation and their following reaction with nitrosoarenes. We have successfully applied this method to the late-stage modification of complex and biologically active acids and applied it in novel radical cascade processes.

Supporting Information

 
  • References

    • 1a The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids. Rappoport Z. Liebman JF. Wiley; Chichester: 2008
    • 1b Ashani Y. Silman I. Hydroxylamines and Oximes: Biological Properties and Potential Uses as Therapeutic Agents. In The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids. Rappoport Z. Liebman JF. Wiley; Chichester: 2008. Chap. 13
    • 1c Race NJ. Hazelden IR. Faulkner A. Bower JF. Chem. Sci. 2017; 8: 5248
    • 1d Gao H. Zhou Z. Kwon D.-H. Coombs J. Jones S. Behnke NE. Ess DH. Kürti L. Nat. Chem. 2017; 9: 681
  • 2 Studer A. Curran DP. Angew. Chem. Int. Ed. 2015; 55: 58
    • 3a Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 3b Skubi KL. Blum TR. Yoon TP. Chem. Rev. 2016; 116: 10035
    • 3c Romero NA. Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 3d Hopkinson MN. Sahoo B. Li J.-L. Glorius F. Chem. Eur. J. 2014; 20: 3874
  • 4 Xuan J. Zhang Z.-G. Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 5a Reina DF. Duncey EM. Morcillo SP. Svejstrup TD. Popescu MV. Douglas JJ. Sheikh NS. Leonori D. Eur. J. Org. Chem. 2017; 2108
    • 5b Davies J. Sheikh NS. Leonori D. Angew. Chem. Int. Ed. 2017; 56: 13361
    • 5c Davies J. Svejstrup TD. Reina DF. Sheikh NS. Leonori D. J. Am. Chem. Soc. 2016; 138: 8092
    • 5d Davies J. Booth SG. Essafi S. Dryfe RW. A. Leonori D. Angew. Chem. Int. Ed. 2015; 54: 14017
    • 6a Yamamoto H. Kawasaki M. Bull. Chem. Soc. Jpn. 2007; 80: 595
    • 6b Yamamoto H. Momiyama N. Chem. Commun. 2005; 7 3514
    • 6c Zuman P. Shah B. Chem. Rev. 1994; 94: 1621
    • 7a Kanegawa S. Karasawa S. Maeyama M. Nakano M. Koga N. J. Am. Chem. Soc. 2008; 130: 3079
    • 7b Forrester AR. Fullerton JD. McConnachie G. J. Chem. Soc., Perkin Trans. 1 1983; 1759
    • 7c Dhayalan V. Sämann C. Knochel P. Chem. Commun 2015; 51: 3239
    • 7d Li Y. Chakrabarty S. Studer A. Angew. Chem. Int. Ed. 2015; 54: 3587
    • 8a Momiyama N. Yamamoto H. Org. Lett. 2002; 4: 3579
    • 8b Momiyama N. Yamamoto H. J. Am. Chem. Soc. 2003; 125: 6038
    • 8c Payette JN. Yamamoto H. J. Am. Chem. Soc. 2008; 130: 12276
    • 8d Yanagisawa A. Izumib Y. Takeshita S. Synlett 2009; 716
    • 8e Yanagisawa A. Takeshita S. Izumi Y. Yoshida K. J. Am. Chem. Soc. 2010; 132: 5328
    • 9a Bøgevig A. Sundén H. Córdova A. Angew. Chem. Int. Ed. 2004; 43: 1109
    • 9b Kano T. Ueda M. Takai J. Maruoka K. J. Am. Chem. Soc. 2006; 128: 6046
    • 9c Palomo C. Vera S. Velilla I. Mielgo A. Gómez-Bengoa E. Angew. Chem. Int. Ed. 2007; 46: 8054
    • 9d Shen K. Liu X. Wang G. Lin L. Feng X. Angew. Chem. Int. Ed. 2011; 50: 4684
  • 10 Wong FT. Patra PK. Seayad J. Zhang Y. Ying JY. Org. Lett. 2008; 10: 2333
  • 11 Ayhan P. Demir AS. Adv. Synth. Catal. 2011; 353: 624
    • 12a Gingras BA. Water WA. J. Chem. Soc. 1954; 1920
    • 12b Inamoto N. Simamura O. J. Org. Chem. 1958; 23: 408
    • 12c Hosogai T. Inamoto N. Okazaki R. J. Chem. Soc., Chem. Commun. 1971; 3399
    • 12d Corey EJ. Gross AW. J. Org. Chem. 1985; 50: 5391
    • 12e Gui J. Pan C.-M. Jin Y. Qin T. Lo JC. Lee BJ. Spergel SH. Mertzman ME. Pitts WJ. Cruz TE. L. Schmidt MA. Darvatkar N. Natarajan SR. Baran PS. Science 2015; 348: 886
    • 13a Fisher DJ. Shaum JB. Mills CL. Read de Alaniz J. Org. Lett. 2016; 18: 5074
    • 13b Fisher DJ. Burnett GL. Velasco R. Read de Alaniz J. J. Am. Chem. Soc. 2015; 137: 11614
  • 14 van der Werf A. Hribersek M. Selander N. Org. Lett. 2017; 19: 2374
  • 15 Studer A. Chem. Eur. J. 2001; 7: 1159
  • 16 See SI for more information.
  • 17 Vleeschouwer FD. Speybroeck VV. Waroquier M. Geerlings P. Proft FD. Org. Lett. 2007; 9: 2721
    • 18a Weber M. Fischer H. Helv. Chim. Acta 1998; 81: 770
    • 18b Wong MW. Pross A. Radom L. J. Am. Chem. Soc. 1994; 116: 6284
    • 19a Nicewicz DA. Nguyen TM. ACS Catal. 2014; 4: 355
    • 19b Margrey KA. Nicewicz DA. Acc. Chem. Res. 2016; 49: 1997
    • 19c Fukuzumi S. Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059
    • 20a Pitts DD. Ghorbani CR. Harry SA. Capilato JN. Siegler MA. Lectka T. Chem. Sci. 2017; 8: 6918
    • 20b Pitts CR. Bume DD. Harry SA. Siegler MA. Lectka T. J. Am. Chem. Soc. 2017; 139: 2208