Subscribe to RSS
DOI: 10.1055/s-0036-1591759
An Efficient Ag+-Selective Fluorescent Chemosensor Derived from Tribenzotriquinacene
The authors are grateful for financial support from the National Natural Science Foundation of China (Grant Nos. 21572085 and 21272098), PCSIRT (IRT_15R28), FRFCU (lzujbky-2016-ct02), the 111 Project of MOE (111-2-17), and the UGC of HKSAR (project no: AoE/P-03/08).Publication History
Received: 13 December 2017
Accepted: 12 January 2018
Publication Date:
23 January 2018 (online)
Abstract
A new C 3v -symmetrical tribenzotriquinacene (TBTQ) derivative bearing six 8-quinolinyloxymethyl units at the rim of the bowl-shaped molecular framework is synthesized in a single-step by six-fold etherification of the corresponding hexakis(chloromethyl)-TBTQ precursor with 8-hydroxyquinoline. The resulting compound acts as a fluorescence chemosensor, producing a ‘turn-off’ fluorescent quenching response in the presence of Ag+ ions, and is highly selective toward Ag+ over other cations, such as Al3+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Ga3+, Hg2+, In3+, K+, Mg2+, Mn2+, Na+, Ni2+, Pb2+, Pd2+, and Zn2+. The fluorescence intensity change of the chemosensor solution can be clearly observed by the naked eye upon addition of silver salts.
Key words
tribenzotriquinacenes - 8-quinolinyloxy derivatives - fluorescent chemosensors - chemoselectivity - silver ionsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591759.
- Supporting Information
-
References
- 1a de Silva AP. Gunaratne HQ. N. Gunnlaugsson T. Huxley AJ. M. McCoy CP. Rademacher JT. Rice TE. Chem. Rev. 1997; 97: 1515
- 1b Fan L.-J. Zhang Y. Murphy CB. Angell SE. Parker MF. L. Flynn BR. Jones WE. Jr. Coord. Chem. Rev. 2009; 253: 410
- 1c Joseph R. Rao CP. Chem. Rev. 2011; 111: 4658
- 2 Hu Y. Wang J. Long L. Xiao X. Luminescence 2016; 31: 16
- 3a Lodeiro C. Capelo JL. Mejuto JC. Oliveira E. Santos HM. Pedras B. Nuñez C. Chem. Soc. Rev. 2010; 39: 2948
- 3b Yin J. Hu Y. Yoon J. Chem. Soc. Rev. 2015; 44: 4619
- 4a Yamanaka M. Hara K. Kudo J. Appl. Environ. Microbiol. 2005; 71: 7589
- 4b Ruparelia JP. Chatterjee AK. Duttagupta SP. Mukherji S. Acta Biomater. 2008; 4: 707
- 5a Purcell TW. Peters JJ. Environ. Toxicol. Chem. 1998; 17: 539
- 5b Ratte HT. Environ. Toxicol. Chem. 1999; 18: 89
- 5c Zhang X.-B. Han Z.-X. Fang Z.-H. Shen G.-L. Yu R.-Q. Anal. Chim. Acta 2006; 562: 210
- 5d Lin D.-S. Lai J.-P. Sun H. Yang Z. Zuo Y. Anal. Methods 2014; 6: 1517
- 6 Zhang JF. Zhou Y. Yoon J. Kim JS. Chem. Soc. Rev. 2011; 40: 3416
- 7 Velmurugan K. Raman A. Easwaramoorthi S. Nandhakumar R. RSC Adv. 2014; 4: 35284
- 8a Hapiot F. Tilloy S. Monflier E. Chem. Rev. 2006; 106: 767
- 8b Villalonga R. Cao R. Fragoso A. Chem. Rev. 2007; 107: 3088
- 8c Gramage-Doria R. Armspach D. Matt D. Coord. Chem. Rev. 2013; 257: 776
- 9a Kim JS. Quang DT. Chem. Rev. 2007; 107: 3780
- 9b Kim HJ. Lee MH. Mutihac L. Vicens J. Kim JS. Chem. Soc. Rev. 2012; 41: 1173
- 9c Nimse SB. Kim T. Chem. Soc. Rev. 2013; 42: 366
- 10a Xue M. Yang Y. Chi X. Zhang Z. Huang F. Acc. Chem. Res. 2012; 45: 1294
- 10b Ogoshi T. Yamagishi T.-a. Eur. J. Org. Chem. 2013; 2961
- 10c Yang L. Tan X. Wang ZQ. Zhang X. Chem. Rev. 2015; 115: 7196
- 11 Kuck D. Chem. Rev. 2006; 106: 4885
- 12a Kuck D. Schuster A. Krause RA. Tellenbröker J. Exner CP. Penk M. Bögge H. Müller A. Tetrahedron 2001; 57: 3587
- 12b Brandenburg JG. Grimme S. Jones PG. Markopoulos G. Hopf H. Cyranski MK. Kuck D. Chem. Eur. J. 2013; 19: 9930
- 12c Kuck D. Pure Appl. Chem. 2006; 78: 749
- 13a Mughal EU. Kuck D. Eur. J. Org. Chem. 2012; 34163
- 13b Mughal EU. Neumann B. Stammler H.-G. Li Z.-M. Wei J. Kuck D. Cao X.-P. Eur. J. Org. Chem. 2015; 2835
- 13c Wei J. Li Z.-M. Jin X.-J. Yao X.-J. Cao X.-P. Chow H.-F. Kuck D. Chem. Asian J. 2015; 10: 1150
- 14a Wang T. Hou Q.-Q. Teng Q.-F. Yao X.-J. Niu W.-X. Cao X.-P. Kuck D. Chem. Eur. J. 2010; 16: 12412
- 14b Zhang Y.-F. Cao X.-P. Chow H.-F. Kuck D. J. Org. Chem. 2017; 82: 179
- 15 Zhou L. Zhang T.-X. Li B.-R. Cao X.-P. Kuck D. J. Org. Chem. 2007; 72: 6382
- 16 Mughal EU. Eberhard J. Kuck D. Chem. Eur. J. 2013; 19: 16029
- 17 Al-Mandhary MR. A. Steel PJ. Eur. J. Inorg. Chem. 2004; 329
- 18 Al-Mandhary MR. A. Fitchett CM. Steel PJ. Aust. J. Chem. 2006; 59: 307
- 19 Fittings of the binding data were performed using the bind fit program available from: http://supramolecular.org; accessed Jan. 15, 2018
- 20 Ulatowski F. Dąbrowa K. Bałakier T. Jurczak J. J. Org. Chem. 2016; 81: 1746
- 21 Hibbert DB. Thordarson P. Chem. Commun. 2016; 52: 12792
- 22 Thordarson P. Binding Constants and Their Measurements. In Supramolecular Chemistry: From Molecules to Nanomaterials. Steed JW. Gale PA. John Wiley & Sons; Weinheim: 2012: 239