Subscribe to RSS
DOI: 10.1055/s-0036-1591762
Product Divergence in Coinage-Metal-Catalyzed Reactions of π-Rich Compounds
This short review article was supported by a Discovery Project Grant (DP160101682) from the Australian Research Council. All present and past group members whose names appear in the references are also thanked for their invaluable contributions.Publication History
Received: 05 December 2017
Accepted after revision: 12 January 2018
Publication Date:
12 February 2018 (online)
Abstract
This short review aims to summarize how the product outcome of reactions of a common starting material can sometimes be controlled by the judicious choice of copper, silver or gold as the catalyst. It highlights the different reactivities observed in the functional group transformations of π-rich substrates mediated by the three group 11 metal salts.
1 Introduction
2 Reactions of Propargyl Amines, Esters and Their Derivatives
3 Reactions of Phenylacetylene Derivatives
4 Reactions of π-Rich Alcohols and Ethers
5 Indolyl Cyclopropene and Alkynone Rearrangements
6 Reactions Involving Metal-Carbene and Metal-Carbenoid Intermediates
7 Conclusion
-
References
- 1a Garcia-Cabeza AL. Moreno-Dorado FJ. Ortega MJ. Guerra FM. Synthesis 2016; 48: 2323
- 1b Hao W. Liu Y. Beilstein J. Org. Chem. 2015; 11: 2132
- 1c Guo X.-X. Gu D.-W. Wu Z. Zhang W. Chem. Rev. 2015; 115: 1622
- 1d Sambiagio C. Marsden SP. Blacker AJ. McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
- 1e Allen SE. Walvoord RR. Padilla-Salinas R. Kozlowski MC. Chem. Rev. 2013; 113: 6234
- 1f Gephart RT. Warren TH. Organometallics 2012; 31: 7728
- 1g Liu T. Fu H. Synthesis 2012; 44: 2805
- 1h Hirano K. Miura M. Chem. Commun. 2012; 48: 10704
- 1i Fehr C. Synlett 2012; 23: 990
- 1j Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
- 1k Liu Y. Wan J.-P. Chem. Asian. J. 2012; 7: 1488
- 1l Cacchi S. Fabrizi G. Goggiamani A. Org. Biomol. Chem. 2011; 9: 641
- 2a Zheng Q.-Z. Jiao N. Chem. Soc. Rev. 2016; 45: 4590
- 2b Pellissier H. Chem. Rev. 2016; 116: 14868
- 2c Sekine K. Yamada T. Chem. Soc. Rev. 2016; 45: 4524
- 2d Wang Y. Kumar RK. Bi X. Tetrahedron Lett. 2016; 57: 5730
- 2e Fang G. Bi X. Chem. Soc. Rev. 2015; 44: 8124
- 2f Yamamoto Y. Chem. Rev. 2008; 108: 3199
- 2g Álvarez-Corral M. Muñoz-Dorado M. Rodríguez-García I. Chem. Rev. 2008; 108: 3174
- 2h Weibel J.-M. Blanc A. Pale P. Chem. Rev. 2008; 108: 3149
- 2i Naodovic M. Yamamoto H. Chem. Rev. 2008; 108: 3132
- 3a Zhang M. Zhu C. Ye L.-W. Synthesis 2017; 49: 1150
- 3b Wang Q. Shi M. Synlett 2017; 28: 2230
- 3c Siva Kumari AL. Siva Reddy A. Swammy KC. K. Org. Biomol. Chem. 2016; 14: 6651
- 3d Day DP. Chan PW. H. Adv. Synth. Catal. 2016; 358: 1368
- 3e Quintavalla A. Bandini M. ChemCatChem 2016; 8: 1437
- 3f Wei Y. Shi M. ACS Catal. 2016; 6: 2515
- 3g Nayak S. Prabagar B. Sahoo AK. Org. Biomol. Chem. 2016; 14: 803
- 3h Ranieri B. Escofet I. Echavarren AM. Org. Biomol. Chem. 2015; 13: 7103
- 3i Jia M. Bandini M. ACS Catal. 2015; 5: 1638
- 3j Dorel R. Echavarren AM. Chem. Rev. 2015; 115: 9028
- 3k Hashmi AS. K. Acc. Chem. Res. 2014; 47: 864
- 3l Alcaide B. Almendros P. Acc. Chem. Res. 2014; 47: 939
- 3m Obradors C. Echavarren AM. Acc. Chem. Res. 2014; 47: 902
- 3n Wang Y.-M. Lackner AD. Toste FD. Acc. Chem. Res. 2014; 47: 889
- 4a Blanc A. Bénéteau V. Weibel J.-M. Pale P. Org. Biomol. Chem. 2016; 14: 9184
- 4b Jordan AJ. Lalic G. Sadigh JP. Chem. Rev. 2016; 116: 8318
- 4c Echavarren AM. Jiao N. Gevorgyan V. Chem. Soc. Rev. 2016; 45: 4445
- 4d Zhang L. Fang G. Kumar RK. Bi X. Synthesis 2015; 47: 2317
- 4e Majumdar KC. Sinha B. RSC Adv. 2014; 4: 8085
- 4f Barreiro EM. Adrio LA. Hii KK. Brazier JB. Eur. J. Org. Chem. 2013; 1027
- 4g Boogaerts II. F. Nolan SP. Chem. Commun. 2011; 47: 3021
- 4h Lin JC. Y. Huang RT. W. Lee CS. Bhattacharyya A. Hwang WS. Lin IJ. B. Chem. Rev. 2009; 109: 3561
- 4i Belmont P. Parker E. Eur. J. Org. Chem. 2009; 6075
- 4j Patel NT. Yamamoto Y. Chem. Rev. 2008; 108: 3395
- 4k Diaz-Requejo MM. Perez PJ. Chem. Rev. 2008; 108: 3379
- 5a Lopez-de-Luzuriaga JM. Monge M. Olmos ME. Dalton Trans. 2017; 46: 2046
- 5b Chinta JP. Sens. Actuators B. 2017; 248: 733
- 5c Marinelli M. Santini C. Pellei M. Curr. Top. Med. Chem. 2016; 16: 2995
- 5d Fuhr O. Dehnen S. Fenske D. Chem. Soc. Rev. 2013; 42: 1871
- 5e Danovich D. Shaik S. Acc. Chem. Res. 2013; 47: 417
- 5f Biersack B. Ahmad A. Sarkar FH. Schobert R. Curr. Med. Chem. 2012; 19: 3949
- 5g Tan SJ. Yan YK. Lee PP. F. Lim KH. Future Med. Chem. 2010; 2: 1591
- 5h Stadtman ER. Annu. Rev. Biochem. 1993; 62: 797
- 6a Haak E. Eur. J. Org. Chem. 2017; 940
- 6b Kazem Shiroodi R. Gevorgyan V. Chem. Soc. Rev. 2013; 42: 4991
- 6c Wang S. Zhang G. Zhang L. Synlett 2010; 692
- 7 Fürstner A. Hannen P. Chem. Eur. J. 2006; 12: 3006
- 8 Oh CH. Kim JH. Oh BK. Park JR. Lee JH. Chem. Eur. J. 2013; 19: 2592
- 9 Amijs CH. M. Lopez-Carrillo V. Echavarren AM. Org. Lett. 2007; 9: 4021
- 10 Dudnik AS. Schwier T. Gevorgyan V. Org. Lett. 2008; 10: 1465
- 11 Kazem Shiroodi R. Dudnik AS. Gevorgyan V. J. Am. Chem. Soc. 2012; 134: 6928
- 12 Kazem Shiroodi R. Sugawara M. Ratushnyy M. Yarbrough DC. Wink DJ. Gevorgyan V. Org. Lett. 2015; 17: 4062
- 13 Marion N. Diez-Gonzáles S. de Fremont P. Noble AR. Nolan SP. Angew. Chem. Int. Ed. 2006; 45: 3647
- 14 Asikainen M. Woodward S. Tetrahedron 2012; 68: 5492
- 15 Susanti D. Liu L.-J. Rao W. Lin S. Ma D.-L. Lueng C.-H. Chan PW. H. Chem. Eur. J. 2015; 21: 9111
- 16 Zhao Y. Jin J. Boyle JW. Lee BR. Day DP. Susanti D. Clarkson GJ. Chan PW. H. J. Org. Chem. 2017; 82: 2826
- 17 Pereshivko OP. Peshkov VA. Jacobs J. Van Meervelt L. Van der Eycken EV. Adv. Synth. Catal. 2013; 355: 781
- 18 Pereshivko OP. Peshkov VA. Peshkov AA. Jacobs J. Van Meervelt L. Van der Eycken EV. Org. Biomol. Chem. 2014; 12: 1741
- 19 Peshkov VA. Pereshivko OP. Sharma S. Meganathan T. Parmar VS. Ermolat’ev DS. Van der Eycken EV. J. Org. Chem. 2011; 76: 5867
- 20 Kern N. Blanc A. Miaskiewicz S. Robinette M. Wiebel J.-M. Pale P. J. Org. Chem. 2012; 77: 4323
- 21 Kern N. Blanc A. Wiebel J.-M. Pale P. Chem. Commun. 2011; 47: 6665
- 22 Zeng Q. Zhang L. Yang J. Xu B. Xiao Y. Zhang J. Chem. Commun. 2014; 50: 4203
- 23 Gawade SA. Huple DB. Liu R.-S. J. Am. Chem. Soc. 2014; 136: 2978
- 24 For reviews on the coinage-metal-catalyzed reactions of phenyl acetylene derivatives, see Refs. 1l, 2e and 3j.
- 25 Vachhani DD. Pehta VP. Modha SG. Van Hecke K. Van Meervelt L. Van der Eycken EV. Adv. Synth. Catal. 2012; 354: 1593
- 26 Zhu S. Zhang Z. Huang X. Jiang H. Guo Z. Chem. Eur. J. 2013; 19: 4695
- 27 Liang R. Ma T. Zhu S. Org. Lett. 2014; 16: 4412
- 28 Zhu S. Gua Z. Huang Z. Jiang H. Chem. Eur. J. 2014; 20: 2425
- 29 Domaradzki ME. Long Y. She Z. Lio X. Zhang G. Chen Y. J. Org. Chem. 2015; 80: 11360
- 30 Krishna NK. Saraswati AP. Sathish M. Shankaraiah N. Kamal A. Chem. Commun. 2016; 52: 4581
- 31 Sharma P. Kumar NP. Krishna NH. Prasanna D. Sridhar B. Shankaraiah N. Org. Chem. Front. 2016; 3: 1503
- 32 Naoe S. Saito T. Uchiyama M. Oishim S. Fujii N. Ohno H. Org. Lett. 2015; 17: 1774
- 33 Fang Y. Wang C. Su S. Yu H. Huang Y. Org. Biomol. Chem. 2014; 12: 1061
- 34a Ayers BJ. Chan PW. H. Synlett 2015; 26: 1305
- 34b Zhu Y. Sun L. Lu P. Wang Y. ACS Catal. 2014; 4: 1911
- 35 Coutant E. Young PC. Barker G. Lee A.-L. Beilstein J. Org. Chem. 2013; 9: 1797
- 36 Gronner C. dit Bel PF. Henrion G. Kramer S. Gagosz F. Org. Lett. 2014; 16: 2092
- 37 Nolla-Saltiel R. Robles-Marin E. Porcel S. Tetrahedron Lett. 2014; 55: 4484
- 38 Kothandaraman P. Zhao Y. Lee BR. Ng CJ. L. Lee JY. Ayers BJ. Chan PW. H. Adv. Synth. Catal. 2016; 358: 1385
- 39 Kothandaraman P. Rao W. Foo SJ. Chan PW. H. Angew. Chem. Int. Ed. 2010; 49: 4619
- 40 Susanti D. Kohm F. Kusuma JA. Kothandaraman P. Chan PW. H. J. Org. Chem. 2012; 77: 7166
- 41 Fehr C. Magpantay I. Arpagaus J. Marquet X. Vuagnoux M. Angew. Chem. Int. Ed. 2009; 48: 7221
- 42 Fehr C. Vuagnoux M. Buzas A. Arpagaus J. Sommer H. Chem. Eur. J. 2011; 17: 6214
- 43 Rao W. Chan PW. H. Chem. Eur. J. 2008; 14: 10486
- 44 Kothandaraman P. Huang C. Susanti D. Rao W. Chan PW. H. Chem. Eur. J. 2011; 17: 10081
- 45 For reviews on the coinage-metal-catalyzed indolyl cyclopropene and alkynone rearrangements, see Refs. 2g, 3c and: James MJ. O’Brien P. Taylor RJ. K. Unsworth WP. Chem. Eur. J. 2016; 22: 2856
- 46 Zhu P.-L. Zhang Z. Tang X.-Y. Marek I. Shi M. ChemCatChem 2015; 7: 595
- 47 Liddon JT. R. James MJ. Clarke AK. O’Brien P. Taylor RJ. K. Unsworth WP. Chem. Eur. J. 2016; 22: 8777
- 48a Che J. Xing D. Hu W. Curr. Org. Chem. 2016; 20: 41
- 48b Qian D. Zhang J. Chem. Soc. Rev. 2015; 44: 677
- 48c Doyle MP. Duffy R. Ratnikov M. Zhou L. Chem. Rev. 2010; 110: 704
- 49 Ma B. Wu Z. Huang B. Liu L. Zhang J. Chem. Commun. 2016; 52: 9351
- 50 Ma B. Wu J. Liu L. Zhang J. Chem. Commun. 2017; 53: 10164
- 51 Huang D. Xu G. Peng S. Sun J. Chem. Commun. 2017; 53: 3197
- 52 Briones JF. Davies HM. L. J. Am. Chem. Soc. 2012; 134: 11916
- 53 Fructos MR. de Frémonet P. Nolan SP. Díaz-Requejo MM. Pérez PJ. Organometallics 2006; 25: 2237
- 54 Ghorpade S. Su M.-D. Liu R.-S. Angew. Chem. Int. Ed. 2013; 52: 4229
Recent reviews on the use of copper catalysis in organic synthesis:
Recent reviews on the use of silver catalysis in organic synthesis:
Recent reviews on the use of gold catalysis in organic synthesis:
Reviews comparing the similar reactivities of the coinage metals:
Selected reviews on the other fields of application of the coinage metals:
Reviews on the coinage-metal-catalyzed reactions of propargyl amines, esters and their derivatives, see Refs. 1g, 3c, 3d, 4d and:
For reviews on the coinage-metal-catalyzed reactions of π-rich alcohols and ethers, see Refs. 1i, 2g, 3c, 3d, 3k, 4d, 4f, 5a and:
For recent reviews on coinage-metal-carbene and -carbenoid formation from diazo precursors, see Refs. 4h, 4j and: