Synthesis 2018; 50(09): 1849-1856
DOI: 10.1055/s-0036-1591861
paper
© Georg Thieme Verlag Stuttgart · New York

Continuous-Flow Reductive Alkylation: Synthesis of Bio-based Symmetrical and Disymmetrical Ethers

Sophie Bruniaux
a   Sorbonne Universités, Université de Technologie de Compiègne, Centre de Recherche Royallieu, CS 60 319, 60203 Compiègne cedex, France   Email: christophe.len@utc.fr
,
Denis Luart
b   Ecole Supérieure de Chimie Organique et Minérale, EA 4297 TIMR, Compiègne, France
,
a   Sorbonne Universités, Université de Technologie de Compiègne, Centre de Recherche Royallieu, CS 60 319, 60203 Compiègne cedex, France   Email: christophe.len@utc.fr
c   PSL Research University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France
› Author Affiliations
This work was performed in partnership with the SAS PIVERT within the frame of the French Institute for the Energy Transition (Institut pour la Transition Energetique (ITE)) P.I.V.E.R.T. (www.institut-pivert.com) selected as an Investment for the Future (Inves- tissements d’Avenir). This work was supported, as part of the Investments for the Future, by the French Government under reference ANR-001-01.
Further Information

Publication History

Received: 03 October 2017

Accepted after revision: 10 November 2017

Publication Date:
24 January 2018 (online)


Abstract

For the first time, a reductive alkylation process in continuous flow has been elaborated for the conversion of bio-based alcohols and aldehydes into symmetrical and dissymmetrical high-value-added ethers for industrial companies. The developed method is an etherification associating liquid, solid and gas phases under green conditions (continuous flow, catalysis, bio-based starting materials).

 
  • References

  • 1 Rudnick LR. Kremer RA. Law DA. US5552071 A, 3. September, 1996
  • 2 Herzog O. Schons-Lueder K. CA2773908 A1, 31. March, 2011
  • 3 Salditt F. US2647100 A, 28. July, 1953
  • 4 Olah GA. EP0750658 A1, 2. January, 1997
  • 5 Yano N. Fukinbara I. Takano M. US4069351 A, 17. January, 1978
  • 6 Golubkov A. WO0118154 A1, 15. March, 2001
  • 7 Bethmont V. Fache F. Lemaire M. Tetrahedron Lett. 1995; 36: 4235
  • 8 Bethmont V. Montassier C. Marecot P. J. Mol. Catal. A: Chem. 2000; 152: 133
  • 9 Williamson AW. J. Chem. Soc. 1852; 229
  • 10 Cox HL. Greer PS. US2050600 A, 11. August, 1936
  • 11 Juršić B. Tetrahedron 1988; 44: 6677
  • 12 Barluenga J. Alonso-Cires L. Campos PJ. Asensio G. Synthesis 1983; 53
  • 13 Harpp DN. Gingras M. J. Am. Chem. Soc. 1988; 110: 7737
  • 14 Gooden PN. Bourne RA. Parrott AJ. Bevinakatti HS. Irvine DJ. Poliakoff M. Org. Process Res. Dev. 2010; 14: 411
  • 15 Gentzen M. Habicht W. Doronkin DE. Grunwaldt J.-D. Sauer J. Behrens S. Catal. Sci. Technol. 2016; 6: 1054
  • 16 Khusnutdinov RI. Shchadneva NA. Mayakova YY. Russ. J. Org. Chem. 2014; 50: 790
  • 17 Rano TA. Chapman KT. Tetrahedron Lett. 1995; 36: 3789
  • 18 Krchňák V. Flegelová Z. Weichsel AS. Lebl M. Tetrahedron Lett. 1995; 36: 6193
  • 19 But TY. S. Toy PH. Chem. Asian J. 2007; 2: 1340
  • 20 Hughes DL. Org. Prep. Proced. Int. 1996; 28: 127
  • 21 Ruppert AM. Parvulescu AN. Arias M. Hausoul PJ. C. Bruijnincx PC. A. Gebbink RJ. M. K. Weckhuysen BM. J. Catal. 2009; 268: 251
  • 22 Brown HC. Kurek JT. Rei M.-H. Thompson KL. J. Org. Chem. 1984; 49: 2551
  • 23 Ready JM. Jacobsen EN. J. Am. Chem. Soc. 2001; 123: 2687
  • 24 Williams DB. Lawton M. Org. Biomol. Chem. 2005; 3: 3269
  • 25 Rodriguez CG. Ferrier RC. Jr. Helenic A. Lynd NA. Macromolecules 2017; 50: 3121
  • 26 Shintou T. Mukaiyama T. J. Am. Chem. Soc. 2004; 126: 7359
  • 27 Sassaman MB. Prakash GK. S. Olah GA. Donald P. Loker KB. Tetrahedron 1988; 44: 3771
  • 28 Carreño MC. Des Mazery R. Urbano A. Colobert F. Solladié G. J. Org. Chem. 2003; 68: 7779
  • 29 Kopecky DJ. Rychnovsky SD. J. Org. Chem. 2000; 65: 191
  • 30 Sakai N. Moriya T. Konakahara T. J. Org. Chem. 2007; 72: 5920
  • 31 Sheldon RA. S. Downing R. Appl. Catal., A 1999; 189: 163
  • 32 Liu Z. Breit B. Angew. Chem. Int. Ed. 2016; 55: 8440
  • 33 Dang Y. Qu S. Wang Z.-X. Wang X. Organometallics 2013; 32: 2804
  • 34 Zhang Z. Widenhoefer RA. Org. Lett. 2008; 10: 2079
  • 35 Corma A. Ruiz VR. Leyva-Pérez A. Sabater MJ. Adv. Synth. Catal. 2010; 352: 1701
  • 36 Zhang C. Sun P. J. Org. Chem. 2014; 79: 8457
  • 37 Zhang S.-Y. He G. Zhao Y. Wright K. Nack WA. Chen G. J. Am. Chem. Soc. 2012; 134: 7313
  • 38 Zhang L.-B. Hao X.-Q. Zhang S.-K. Liu K. Ren B. Gong J.-F. Niu J.-L. Song M.-P. J. Org. Chem. 2014; 79: 10399
  • 39 Hensen K. Mahaim C. Hölderich WF. Appl. Catal., A 1997; 149: 311
  • 40 Radhakrishnan S. Thoelen G. Franken J. Degrève J. Kirschhock CE. A. Martens JA. ChemCatChem 2013; 5: 576
  • 41 Fache F. Bethmont V. Jacquot L. Lemaire M. Recl. Trav. Chim. Pays-Bas 1996; 115: 231
  • 42 Bryan MC. Wernick D. Hein CD. Petersen JV. Eschelbach JW. Doherty EM. Beilstein J. Org. Chem. 2011; 7: 1141
  • 43 Dormán G. Kocsis L. Jones R. Darvas F. J. Chem. Health Saf. 2013; 20: 3
  • 44 Cossar PJ. Hizartzidis L. Simone MI. McCluskey A. Gordon CP. Org. Biomol. Chem. 2015; 13: 7119
  • 45 Introduction à la chimie de flux et présentation de Vapourtec - Vapourtec International https://www.vapourtec.com/fr/ (accessed Nov 30, 2017)
  • 46 ThalesNano Nanotechology Inc - H-Cube Pro http://thalesnano.com/products/h-cube-series/h_cube_pro (accessed Nov 30, 2017)
  • 47 Flow Products - Syrris - Flow chemistry, plugflow, microchemistry, or continuous flow chemistry using continuous reactors http://syrris.com/flow-products (accessed Nov 30, 2017)