Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00032269.xml
CC BY-ND-NC 4.0 · SynOpen 2018; 02(01): 0058-0063
DOI: 10.1055/s-0036-1591931
DOI: 10.1055/s-0036-1591931
paper
First Total Synthesis of Cryptopyranmoscatone A3 and Cryptopyranmoscatone B4
The authors thank the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for financial support as part of a five year programme under the title ORIGIN (CSC-0108). A.M. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for financial assistance in the form of a Research Fellowship.Further Information
Publication History
Received: 04 October 2017
Accepted after revision: 20 January 2018
Publication Date:
27 February 2018 (online)
Abstract
The first total synthesis of cryptopyranmoscatones A3 and B4 has been accomplished from d-ribose or but-3-ynol. The key steps involved in the synthesis are oxa-Michael addition, highly diastereoselective Brown allylation, and ring closing metathesis (RCM) and cross metathesis (CM) reactions.
Key words
oxa-Michael addition - Brown asymmetric allylation - ring-closing metathesis - cross metathesisSupporting Information
- Experimental procedures, spectroscopic data, copies of 1H NMR 13C NMR and NOESY spectra are available. Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591931.
- Supporting Information
-
References
- 1a de Fátima A. Kohn LK. de Carvalho JE. Pilli RA. Bioorg. Med. Chem. 2006; 14: 622
- 1b Marco JA. Carda M. Recent Advances in the Field of Naturally Occurring 5,6-Dihydropyran-2-ones. In Natural Lactones and Lactams. Synthesis, Occurrence and Biological Activity. Janecki T. Wiley-VCH; Weinheim: 2014: 51-100
- 2 Wach J.-Y. Güttinger S. Kutay U. Gademann K. Bioorg. Med. Chem. Lett. 2010; 20: 2843
- 3 Mosaddik MA. Haque ME. Phytother. Res. 2003; 17: 1155
- 4 de Fátima A. Martins CV. B. de Resende MA. Magalhaes TF. F. Lima BH. S. Watanabe GA. Ruiz AL. T. G. de Carvalho JE. Pilli RA. Lett. Drug Des. Discovery 2008; 5: 74
- 5 Kabir KE. Khan AR. Mosaddik MA. J. Appl. Entomol. 2003; 127: 112
- 6 Cavalheiro AJ. Yoshida M. Phytochemistry 2000; 53: 811
- 7 Sturgeon CM. Cinel B. Díaz-Marrero AR. McHardy LM. Ngo M. Andersen RJ. Roberge M. Cancer Chemother. Pharmacol. 2008; 61: 407
- 8 Giocondo MP. Bassi CL. Telascrea M. Cavalheiro AJ. Bolzani VS. Silva DH. S. Agustoni D. Mello ER. Soares CP. Rev Ciênc Farm Básica Apl. 2009; 30: 315
- 9 Drewes SE. Horn MM. Ramesar NS. Ferreira D. Nel RJ. J. Hutchings A. Phytochemistry 1998; 49: 1683
- 10 Zschocke S. VanStaden J. J. Ethnopharmacol. 2000; 71: 473
- 11a Sabitha G. Sandeep A. Senkara Rao A. Yadav JS. Eur. J. Org. Chem. 2013; 6702
- 11b Sabitha G. Praveen A. Kishore DasS. Synthesis 2015; 47: 330
- 11c Raju A. Shiva Raju K. Sabitha G. Tetrahedron: Asymmetry 2015; 26: 948
- 11d Sabitha G. Senkara Rao A. Yadav JS. Tetrahedron: Asymmetry 2011; 22: 866
- 11e Marco JA. Carda M. Murga J. Falomir E. Tetrahedron 2007; 63: 2929
- 12 Sabitha G. Reddy SS. S. Yadav JS. Tetrahedron Lett. 2010; 51: 6259
- 13 Sabitha G. Reddy SS. S. Yadav JS. Tetrahedron Lett. 2011; 52: 2407
- 14 Maheswara Reddy A. Sabitha G. Sirisha K. RSC Adv. 2015; 5: 35746
- 15 Sabitha G. Raju A. Nagendra Reddy C. Yadav JS. RSC Adv. 2014; 4: 1496
- 16a Maram L. Parigi RR. Das B. Tetrahedron 2016; 72: 7135
- 16b Ping LiZ. Dong W. Junhui Z. J. Chem. Res. 2016; 40: 331
- 17 The diastereomeric ratio of the product was determined by using a Shimadzu high-performance liquid-chromatography (HPLC) system equipped with a chiral HPLC column (Chiralcel OD) and a UV detector at an absorbance of 254 nm. Eclipse XDB C18 (150 × 4.6 mm, 5 (m column) and a solvent system of 60% acetonitrile in 0.1% FA at a flow rate of 1.0 mL/min were used. tR: 7.8 and 8.4 min.
- 18 Hansen TM. Florence GJ. Lugo-Mas P. Chen J. Abrams JN. Forsyth CJ. Tetrahedron Lett. 2003; 44: 57
- 19 Prasad KR. Phaneendra G. Tetrahedron 2012; 68: 7489
- 20a Fuwa H. Yamaguchi H. Sasaki M. Org. Lett. 2010; 12: 1848
- 20b Hiebel M.-A. Pelotier B. Piva O. Tetrahedron Lett. 2010; 51: 5091
- 21a Brown HC. Jadhav PK. J. Am. Chem. Soc. 1983; 105: 2092
- 21b Brown HC. Bhat KS. Randad RS. J. Org. Chem. 1989; 54: 1570
- 21c Bolshakov S. Leighton JL. Org. Lett. 2005; 7: 3809
- 21d Chan K.-P. Ling YH. Loh T.-P. Chem. Commun. 2007; 939
- 22a Grubbs RH. Miller SJ. Fu GC. Acc. Chem. Res. 1995; 28: 446
- 22b Furstner A. Angew. Chem. Int. Ed. 2000; 39: 3012
- 22c Trnka TM. Grubbs RH. Acc. Chem. Res. 2001; 34: 18
- 22d Grubbs RH. Chang S. Tetrahedron 1998; 54: 4413
- 23 Drouet KE. Theodorakis EA. Chem. Eur. J. 2000; 6: 1987
- 24a Grubbs RH. Chang S. Tetrahedron 1998; 54: 4413
- 24b Fuwa H. Yamaguchi H. Sasaki M. Org. Lett. 2010; 12: 1848
- 24c Hiebel M.-A. Pelotier B. Piva O. Tetrahedron Lett. 2010; 51: 5091