RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00032269.xml

CC BY ND NC 4.0 · SynOpen 2018; 02(01): 0041-0049
DOI: 10.1055/s-0036-1591933
DOI: 10.1055/s-0036-1591933
paper
Asymmetric Titanium-Catalyzed Cyclopropanation of Nitriles with Grignard Reagents
Autor*innen
J.C. and P.S. gratefully thank the ‘Ministère de l’enseignement supérieur et de la recherche‘, the ‘Centre National de la Recherche Scientifique’ and the ‘Région Pays-de-la-Loire’ for PhD fellowships.
Weitere Informationen
Publikationsverlauf
Received: 12. Dezember 2017
Accepted: 20. Januar 2018
Publikationsdatum:
20. Februar 2018 (online)

Abstract
The titanium-catalyzed asymmetric cyclopropanation of cyanoesters with Grignard reagents was investigated for the first time. Particularly, the study of the efficiency of Taddol-based titanium complexes has shown that the prior preparation of Taddol titanium complexes was not required and a large panel of ligands was evaluated by using this approach. The spirocyclopropanelactams were obtained with good diastereoselectivity and with moderate enantioselectivities from the main diastereoisomer (up to 32%).
Key words
cyclopropanes - enantioselectivity - Grignard reagents - nitriles - spiro compounds - titaniumSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591933.
- Supporting Information (PDF) (opens in new window)
-
References
- 1a Salaün J. Top. Curr. Chem. 2000; 207: 1
- 1b Miyamura S. Itami K. Yamagushi J. Synthesis 2017; 49: 1131
- 2 http://www.who.int/medicines/publications/essentialmedicines/en/
- 3 Sinha U. Hollenbach SJ. Andre P. U. S. Pat. Appl. US 20080254036 A1 20081016, 2008
- 4 Johansen LM. Owens CM. Mawhinney C. Chappell TW. Brown AT. Frank MG. Altmeyer R. PCT Int. Appl. WO 2008033466 A2 20080320, 2008
- 5 McCauley JA. McIntyre CJ. Rudd MT. Nguyen KT. Romano JJ. Butcher JW. Gilbert KF. Bush KJ. Holloway MK. Swestock J. Wan B.-L. Carroll SS. DiMuzio JM. Graham DJ. Ludmerer SW. Mao S.-S. Stahlhut MW. Fandozzi CM. Trainor N. Olsen DB. Vacca JP. Liverton NJ. J. Med. Chem. 2010; 53: 2443
- 6a Ebner C. Carreira EM. Chem. Rev. 2017; 117: 11651
- 6b Asymmetric Synthesis of Three-Membered Rings . Pelissier H. Lattanzi A. Dalpozzo R. Wiley; Weinheim: 2017
- 6c Bartoli G. Bencivenni G. Dalpozzo R. Synthesis 2014; 46: 979
- 7 For a recent example, see: Ji Y.-Y. Lin S.-D. Wang Y.-J. Su M.-B. Zhang W. Gunosewoyo H. Yang F. Li J. Zhou Y.-B. Yu L.-F. Eur. J. Med. Chem. 2017; 141: 101
- 8a Abu-Elfotoh A.-M. Phomkeona K. Shibatomi K. Iwasa S. Angew. Chem. Int. Ed. 2010; 49: 8439
- 8b Denton JR. Davies HM. L. Org. Lett. 2009; 11: 787
- 8c Song Z. Lu T. Hsung RP. Al-Rashid ZF. Ko C. Tang Y. Angew. Chem. Int. Ed. 2007; 46: 4069
- 9a Lindsay VN. G. Lin W. Charette AB. J. Am. Chem. Soc. 2009; 131: 16383
- 9b Lindsay VN. G. Nicolas C. Charette AB. J. Am. Chem. Soc. 2011; 133: 8972
- 9c Zhu S. Perman JA. Zhang XP. Angew. Chem. Int. Ed. 2008; 47: 8460
- 10 Bégis G. Sheppard TD. Cladingboel DE. Motherwell WB. Tocher DA. Synthesis 2005; 3186
- 11 Teng H.-L. Luo Y. Wang B. Zhang L. Nishiura M. Hou Z. Angew. Chem. Int. Ed. 2016; 55: 15406
- 12 Kulinkovich OG. Sviridov SV. Vasilevskii DA. Synthesis 1991; 234
- 13a Kulinkovich OG. de Meijere A. Chem. Rev. 2000; 100: 2789
- 13b Wolan A. Six Y. Tetrahedron 2010; 66: 15
- 13c Bertus P. Boeda F. Pearson-Long MS. M. Science of Synthesis Knowledge Updates 2012; 1: 1-50
- 13d Bertus P. Szymoniak J. Synlett 2007; 1346
- 14 Chaplinski V. de Meijere A. Angew. Chem. Int. Ed. Engl. 1996; 35: 413
- 15 Bertus P. Szymoniak J. Chem. Commun. 2001; 1792
- 16 Corey EJ. Rao SA. Noe MS. J. Am. Chem. Soc. 1994; 116: 9345
- 17 No explanation was given to justify the variations of yields and ee for the preparation of 1.
- 18a Racouchot S. Sylvestre I. Ollivier J. Kozyrkov YY. Pukin A. Kulinkovich OG. Salaun J. Eur. J. Org. Chem. 2002; 2160
- 19a Konik YA. Kananovich DG. Kulinkovich OG. Tetrahedron 2013; 69: 6673
- 19b Kulinkovich OG. Kananovich DG. Lopp M. Snieckus V. Adv. Synth. Catal. 2014; 356: 3615
- 20 de Meijere A. Chaplinski V. Winsel H. Kordes M. Strecker B. Gazizova V. Savchenko AI. Boese R. Schill F. Chem. Eur. J. 2010; 16: 13862
- 21 Laroche C. Harakat D. Bertus P. Szymoniak J. Org. Biomol. Chem. 2005; 3: 3482
- 22 The formation of the cyclopropane may also precede the formation of the five-membered ring, as proposed in ref 21.
- 23a Kulinkovich OG. Kananovich DG. Eur. J. Org. Chem. 2007; 2121
- 23b Kananovich DG. Kulinkovich OG. Tetrahedron 2008; 64: 1536
- 24 The cis/trans relationship is defined from the two alkyl substituents on the cyclopropane.
- 25 Seebach D. Beck AB. Heckel A. Angew. Chem. Int. Ed. 2001; 40: 92
- 26 Weber B. Seebach D. Tetrahedron 1994; 50: 7473
- 27 Seebach D. Plattner DA. Beck AK. Wang YM. Hunziker D. Petter W. Helv. Chim. Acta 1992; 75: 2171
- 28 The addition of Taddol to Ti(OiPr)4 in CDCl3 gives the spontaneous formation of LTi(OiPr)2 and iPrOH, as shown by NMR spectroscopic analysis.
- 29 Pescitelli G. Di Bari L. Salvadori P. Organometallics 2004; 23: 4223
- 30 Unni AK. Takenada N. Yamamoto H. Rawal VH. J. Am. Chem. Soc. 2005; 127: 1336
- 31a Banphavichit V. Mansawat W. Bhanthumnavin W. Vilaivan T. Tetrahedron 2004; 60: 10559
- 31b Pettit GR. Singh SB. Herald DL. Lloyd-Williams P. Kantoci D. Burkett DD. Barkoczy J. Hogan F. Wardlaw TR. J. Org. Chem. 1994; 59: 6287
- 31c Price MD. Kurth MJ. Schore NE. J. Org. Chem. 2002; 67: 7769
- 32 Wu Y.-D. Yu Z.-X. J. Am. Chem. Soc. 2001; 123: 5777
- 33 Despite many attempts, the oxoesters derived from the direct hydrolysis of the intermediates B1 and B2 were never observed, even at low temperature.
- 34 The nitrile 28 did not form cyclopropylamine to a large extent, and a Lewis acid is required to induce the cyclopropane formation, see ref 15.
- 35 The same kind of repulsion was proposed to explain the high diastereoselectivity observed in the carboxylic ester cyclopropanation, see ref 23b.
- 36 For similar ring contractions, see: Williams CM. Chaplinski V. Schreiner PR. de Meijere A. Tetrahedron Lett. 1998; 39: 7695
- 37 Love BE. Jones EJ. J. Org. Chem. 1999; 64: 3755
- 38 Beck AK. Bastani B. Plattner DA. Petter W. Seebach D. Braunschweiger H. Gysi P. La Vecchia L. Chimia 1991; 45: 238
- 39 Cmrecki V. Eichenauer NC. Frey W. Pietruszka J. Tetrahedron 2010; 66: 6550
- 40 Seebach D. Dahinden R. Marti RE. Beck AK. Plattner DA. Kuehnle FN. M. J. Org. Chem. 1995; 60: 1788
- 41 Du H. Zhao D. Ding K. Chem. Eur. J. 2004; 10: 5964
- 42 Teller H. Flügge S. Goddard R. Fürstner A. Angew. Chem. Int. Ed. 2010; 49: 1949
- 43 Hu X. Shan Z. Song S. Tetrahedron: Asymmetry 2014; 25: 503
- 44 Dindaroglu M. Akyol S. Simsir H. Neudörfl JM. Burke A. Schmalz HG. Tetrahedron: Asymmetry 2013; 24: 657
- 45 Wipf P. Jung J.-K. J. Org. Chem. 2000; 65: 6319
- 46 Lai G. Guo F. Zheng Y. Fang Y. Song H. Xu K. Wang S. Zha Z. Wang Z. Chem. Eur. J. 2011; 17: 1114
- 47 Shen Y. Feng X. Li Y. Zhang G. Jiang Y. Eur. J. Org. Chem. 2004; 129
- 48 De Luca L. Giacomelli G. Synlett 2004; 2180
- 49 Bertus P. Menant C. Tanguy C. Szymoniak J. Org. Lett. 2008; 10: 777
See for example:
Reviews:
An alternative mechanism involving titanium ate complexes as proposed by Kulinkovich is also possible (and probable), but was not presented here to avoid overloading schemes. See: