Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00032269.xml
CC BY-ND-NC 4.0 · SynOpen 2018; 02(01): 0041-0049
DOI: 10.1055/s-0036-1591933
DOI: 10.1055/s-0036-1591933
paper
Asymmetric Titanium-Catalyzed Cyclopropanation of Nitriles with Grignard Reagents
J.C. and P.S. gratefully thank the ‘Ministère de l’enseignement supérieur et de la recherche‘, the ‘Centre National de la Recherche Scientifique’ and the ‘Région Pays-de-la-Loire’ for PhD fellowships.Further Information
Publication History
Received: 12 December 2017
Accepted: 20 January 2018
Publication Date:
20 February 2018 (online)
Abstract
The titanium-catalyzed asymmetric cyclopropanation of cyanoesters with Grignard reagents was investigated for the first time. Particularly, the study of the efficiency of Taddol-based titanium complexes has shown that the prior preparation of Taddol titanium complexes was not required and a large panel of ligands was evaluated by using this approach. The spirocyclopropanelactams were obtained with good diastereoselectivity and with moderate enantioselectivities from the main diastereoisomer (up to 32%).
Key words
cyclopropanes - enantioselectivity - Grignard reagents - nitriles - spiro compounds - titaniumSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591933.
- Supporting Information
-
References
- 1a Salaün J. Top. Curr. Chem. 2000; 207: 1
- 1b Miyamura S. Itami K. Yamagushi J. Synthesis 2017; 49: 1131
- 2 http://www.who.int/medicines/publications/essentialmedicines/en/
- 3 Sinha U. Hollenbach SJ. Andre P. U. S. Pat. Appl. US 20080254036 A1 20081016, 2008
- 4 Johansen LM. Owens CM. Mawhinney C. Chappell TW. Brown AT. Frank MG. Altmeyer R. PCT Int. Appl. WO 2008033466 A2 20080320, 2008
- 5 McCauley JA. McIntyre CJ. Rudd MT. Nguyen KT. Romano JJ. Butcher JW. Gilbert KF. Bush KJ. Holloway MK. Swestock J. Wan B.-L. Carroll SS. DiMuzio JM. Graham DJ. Ludmerer SW. Mao S.-S. Stahlhut MW. Fandozzi CM. Trainor N. Olsen DB. Vacca JP. Liverton NJ. J. Med. Chem. 2010; 53: 2443
- 6a Ebner C. Carreira EM. Chem. Rev. 2017; 117: 11651
- 6b Asymmetric Synthesis of Three-Membered Rings . Pelissier H. Lattanzi A. Dalpozzo R. Wiley; Weinheim: 2017
- 6c Bartoli G. Bencivenni G. Dalpozzo R. Synthesis 2014; 46: 979
- 7 For a recent example, see: Ji Y.-Y. Lin S.-D. Wang Y.-J. Su M.-B. Zhang W. Gunosewoyo H. Yang F. Li J. Zhou Y.-B. Yu L.-F. Eur. J. Med. Chem. 2017; 141: 101
- 8a Abu-Elfotoh A.-M. Phomkeona K. Shibatomi K. Iwasa S. Angew. Chem. Int. Ed. 2010; 49: 8439
- 8b Denton JR. Davies HM. L. Org. Lett. 2009; 11: 787
- 8c Song Z. Lu T. Hsung RP. Al-Rashid ZF. Ko C. Tang Y. Angew. Chem. Int. Ed. 2007; 46: 4069
- 9a Lindsay VN. G. Lin W. Charette AB. J. Am. Chem. Soc. 2009; 131: 16383
- 9b Lindsay VN. G. Nicolas C. Charette AB. J. Am. Chem. Soc. 2011; 133: 8972
- 9c Zhu S. Perman JA. Zhang XP. Angew. Chem. Int. Ed. 2008; 47: 8460
- 10 Bégis G. Sheppard TD. Cladingboel DE. Motherwell WB. Tocher DA. Synthesis 2005; 3186
- 11 Teng H.-L. Luo Y. Wang B. Zhang L. Nishiura M. Hou Z. Angew. Chem. Int. Ed. 2016; 55: 15406
- 12 Kulinkovich OG. Sviridov SV. Vasilevskii DA. Synthesis 1991; 234
- 13a Kulinkovich OG. de Meijere A. Chem. Rev. 2000; 100: 2789
- 13b Wolan A. Six Y. Tetrahedron 2010; 66: 15
- 13c Bertus P. Boeda F. Pearson-Long MS. M. Science of Synthesis Knowledge Updates 2012; 1: 1-50
- 13d Bertus P. Szymoniak J. Synlett 2007; 1346
- 14 Chaplinski V. de Meijere A. Angew. Chem. Int. Ed. Engl. 1996; 35: 413
- 15 Bertus P. Szymoniak J. Chem. Commun. 2001; 1792
- 16 Corey EJ. Rao SA. Noe MS. J. Am. Chem. Soc. 1994; 116: 9345
- 17 No explanation was given to justify the variations of yields and ee for the preparation of 1.
- 18a Racouchot S. Sylvestre I. Ollivier J. Kozyrkov YY. Pukin A. Kulinkovich OG. Salaun J. Eur. J. Org. Chem. 2002; 2160
- 19a Konik YA. Kananovich DG. Kulinkovich OG. Tetrahedron 2013; 69: 6673
- 19b Kulinkovich OG. Kananovich DG. Lopp M. Snieckus V. Adv. Synth. Catal. 2014; 356: 3615
- 20 de Meijere A. Chaplinski V. Winsel H. Kordes M. Strecker B. Gazizova V. Savchenko AI. Boese R. Schill F. Chem. Eur. J. 2010; 16: 13862
- 21 Laroche C. Harakat D. Bertus P. Szymoniak J. Org. Biomol. Chem. 2005; 3: 3482
- 22 The formation of the cyclopropane may also precede the formation of the five-membered ring, as proposed in ref 21.
- 23a Kulinkovich OG. Kananovich DG. Eur. J. Org. Chem. 2007; 2121
- 23b Kananovich DG. Kulinkovich OG. Tetrahedron 2008; 64: 1536
- 24 The cis/trans relationship is defined from the two alkyl substituents on the cyclopropane.
- 25 Seebach D. Beck AB. Heckel A. Angew. Chem. Int. Ed. 2001; 40: 92
- 26 Weber B. Seebach D. Tetrahedron 1994; 50: 7473
- 27 Seebach D. Plattner DA. Beck AK. Wang YM. Hunziker D. Petter W. Helv. Chim. Acta 1992; 75: 2171
- 28 The addition of Taddol to Ti(OiPr)4 in CDCl3 gives the spontaneous formation of LTi(OiPr)2 and iPrOH, as shown by NMR spectroscopic analysis.
- 29 Pescitelli G. Di Bari L. Salvadori P. Organometallics 2004; 23: 4223
- 30 Unni AK. Takenada N. Yamamoto H. Rawal VH. J. Am. Chem. Soc. 2005; 127: 1336
- 31a Banphavichit V. Mansawat W. Bhanthumnavin W. Vilaivan T. Tetrahedron 2004; 60: 10559
- 31b Pettit GR. Singh SB. Herald DL. Lloyd-Williams P. Kantoci D. Burkett DD. Barkoczy J. Hogan F. Wardlaw TR. J. Org. Chem. 1994; 59: 6287
- 31c Price MD. Kurth MJ. Schore NE. J. Org. Chem. 2002; 67: 7769
- 32 Wu Y.-D. Yu Z.-X. J. Am. Chem. Soc. 2001; 123: 5777
- 33 Despite many attempts, the oxoesters derived from the direct hydrolysis of the intermediates B1 and B2 were never observed, even at low temperature.
- 34 The nitrile 28 did not form cyclopropylamine to a large extent, and a Lewis acid is required to induce the cyclopropane formation, see ref 15.
- 35 The same kind of repulsion was proposed to explain the high diastereoselectivity observed in the carboxylic ester cyclopropanation, see ref 23b.
- 36 For similar ring contractions, see: Williams CM. Chaplinski V. Schreiner PR. de Meijere A. Tetrahedron Lett. 1998; 39: 7695
- 37 Love BE. Jones EJ. J. Org. Chem. 1999; 64: 3755
- 38 Beck AK. Bastani B. Plattner DA. Petter W. Seebach D. Braunschweiger H. Gysi P. La Vecchia L. Chimia 1991; 45: 238
- 39 Cmrecki V. Eichenauer NC. Frey W. Pietruszka J. Tetrahedron 2010; 66: 6550
- 40 Seebach D. Dahinden R. Marti RE. Beck AK. Plattner DA. Kuehnle FN. M. J. Org. Chem. 1995; 60: 1788
- 41 Du H. Zhao D. Ding K. Chem. Eur. J. 2004; 10: 5964
- 42 Teller H. Flügge S. Goddard R. Fürstner A. Angew. Chem. Int. Ed. 2010; 49: 1949
- 43 Hu X. Shan Z. Song S. Tetrahedron: Asymmetry 2014; 25: 503
- 44 Dindaroglu M. Akyol S. Simsir H. Neudörfl JM. Burke A. Schmalz HG. Tetrahedron: Asymmetry 2013; 24: 657
- 45 Wipf P. Jung J.-K. J. Org. Chem. 2000; 65: 6319
- 46 Lai G. Guo F. Zheng Y. Fang Y. Song H. Xu K. Wang S. Zha Z. Wang Z. Chem. Eur. J. 2011; 17: 1114
- 47 Shen Y. Feng X. Li Y. Zhang G. Jiang Y. Eur. J. Org. Chem. 2004; 129
- 48 De Luca L. Giacomelli G. Synlett 2004; 2180
- 49 Bertus P. Menant C. Tanguy C. Szymoniak J. Org. Lett. 2008; 10: 777
See for example:
Reviews:
An alternative mechanism involving titanium ate complexes as proposed by Kulinkovich is also possible (and probable), but was not presented here to avoid overloading schemes. See: