RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2018; 50(10): 1958-1964
DOI: 10.1055/s-0036-1591971
DOI: 10.1055/s-0036-1591971
short review
Synthesis of Aryl Trifluoromethyl Ketones
We acknowledge the financial support from the National Natural Science Foundation of China (21372044 & 21772022) and Fuzhou University (022494).Weitere Informationen
Publikationsverlauf
Received: 02. März 2018
Accepted after revision: 05. März 2018
Publikationsdatum:
28. März 2018 (online)
Abstract
Trifluoromethyl ketones have recently been attracting considerable attention because they represent powerful synthetic building blocks with potential pharmaceutical applications. This short review provides an overview of recent development in the synthesis of aryl trifluoromethyl ketones with novel reagents.
1 Introduction
2 Various Methods for the Synthesis of Aryl Trifluoromethyl Ketones
2.1 Oxidation of Trifluoromethyl Alcohols
2.2 Nucleophilic Trifluoromethylation Reactions
2.3 Electrophilic-Type Reactions
2.4 Recently Developed Direct Trifluoroacetylation
3 Conclusions
-
References
- 1 Bégué J.-P. Bonnet-Delpon D. Tetrahedron 1991; 47: 3207
- 2 Kelly CB. Mercadante MA. Leadbeater NE. Chem. Commun. 2013; 49: 11133
- 3 Zeng Y. Ni C. Hu J. Chem. Eur. J. 2016; 22: 3210
- 4 Allen KN. Abeles RH. Biochemistry 1989; 28: 135
- 5 Gelb MH. J. Am. Chem. Soc. 1986; 108: 3146
- 6 Stein RL. Strimpler AM. Edwards PD. Lewis JJ. Mauger RC. Schwartz JA. Stein MM. Trainor DA. Wildonger RA. Zottola MA. Biochemistry 1987; 26: 2682
- 7 Street IP. Lin HK. Laliberte F. Ghomashchi F. Wang Z. Perrier H. Tremblay NM. Huang Z. Weech PK. Gelb MH. Biochemistry 1993; 32: 5935
- 8 Veale CA. Damewood JR. Jr. Steelman GB. Bryant C. Gomes B. Williams J. J. Med. Chem. 1995; 38: 86
- 9 Garrett GS. McPhail SJ. Tornheim K. Correa PE. McIver JM. Bioorg. Med. Chem. Lett. 1999; 9: 301
- 10 Shao Y.-M. Yang W.-B. Kuo T.-H. Tsai K.-C. Lin C.-H. Yang A.-S. Liang P.-H. Wong C.-H. Bioorg. Med. Chem. 2008; 16: 4652
- 11 Gong C.-J. Gao A.-H. Zhang Y.-M. Su M.-B. Chen F. Sheng L. Zhou Y.-B. Li J.-Y. Li J. Nan F.-J. Eur. J. Med. Chem. 2016; 112: 81
- 12 Doucet-Personeni C. Bentley PD. Fletcher RJ. Kinkaid A. Kryger G. Pirard B. Taylor A. Taylor R. Taylor J. Viner R. Silman I. Sussman JL. Greenblatt HM. Lewis T. J. Med. Chem. 2001; 44: 3203
- 13 Zhang D. Tanaka F. Adv. Synth. Catal. 2015; 357: 3458
- 14 Mamat C. Pundt T. Tam Dang TH. Klassen R. Reinke H. Köckerling M. Langer P. Eur. J. Org. Chem. 2008; 492
- 15 Lu X. Cseh S. Byun H.-S. Tigyi G. Bittman R. J. Org. Chem. 2003; 68: 7046
- 16 Török B. Sood A. Bag S. Kulkarni A. Borkin D. Lawler E. Dasgupta S. Landge S. Abid M. Zhou W. Foster M. LeVine H. Török M. ChemMedChem 2012; 7: 910
- 17 Tschirret-Guth RA. Medzihradszky KF. Ortiz de Montellano PR. J. Am. Chem. Soc. 1999; 121: 4731
- 18 Linderman RJ. Kirollos KS. Tetrahedron Lett. 1989; 30: 2049
- 19 Owton WM. Tetrahedron Lett. 2003; 44: 7147
- 20 Mlostoń G. Grzelak P. Heimgartner H. J. Fluorine Chem. 2016; 190: 56
- 21 Cornaggia C. Gundala S. Manoni F. Gopalasetty N. Connon SJ. Org. Biomol. Chem. 2016; 14: 3040
- 22 Duan H.-Y. Ma J. Yuan Z.-Z. Yao R.-S. Tao W. Xu F. Xiao H. Zhao G. Chin. Chem. Lett. 2015; 26: 646
- 23 Lee H.-J. Cho C.-W. Eur. J. Org. Chem. 2014; 387
- 24 Xiao H. Chai Z. Yao R.-S. Zhao G. J. Org. Chem. 2013; 78: 9781
- 25 Chen X. Yang S. Song B.-A. Chi YR. Angew. Chem. Int. Ed. 2013; 52: 11134
- 26 Selig P. Turockin A. Raven W. Chem. Commun. 2013; 49: 2930
- 27 Zhao Q.-Y. Huang L. Wei Y. Shi M. Adv. Synth. Catal. 2012; 354: 1926
- 28 Wang T. Chen X.-Y. Ye S. Tetrahedron Lett. 2011; 52: 5488
- 29 Wang T. Ye S. Org. Biomol. Chem. 2011; 9: 5260
- 30 Wang X.-N. Shao P.-L. Lv H. Ye S. Org. Lett. 2009; 11: 4029
- 31 Nenajdenko VG. Statsuk AV. Balenkova ES. Chem. Heterocycl. Compd. 2003; 39: 598
- 32 D’Accolti L. Annese C. De Riccardis A. De Giglio E. Cafagna D. Fanelli F. Fusco C. Eur. J. Org. Chem. 2012; 4616
- 33 Kan JT. W. Toy P. Tetrahedron Lett. 2004; 45: 6357
- 34 Chopin N. Chastanet G. Le Guennic B. Médebielle M. Pilet G. Eur. J. Inorg. Chem. 2012; 5058
- 35 Chatterjee A. Oh DJ. Kim KM. Youk K.-S. Ahn KH. Chem. Asian J. 2008; 3: 1962
- 36 Mertz E. Zimmerman SC. J. Am. Chem. Soc. 2003; 125: 3424
- 37 Olvera LI. Guzmán-Gutiérrez MT. Zolotukhin MG. Fomine S. Cárdenas J. Ruiz-Trevino FA. Villers D. Ezquerra TA. Prokhorov E. Macromolecules 2013; 46: 7245
- 38 Zhang D. Tao L. Ju J. Wang Y. Wang Q. Wang T. Polymer 2015; 60: 234
- 39 Yang D. Zhou Y. Chang Q. Zhao Y. Qu J. Prog. Chem. 2014; 26: 976
- 40 Linderman RJ. Graves DM. Tetrahedron Lett. 1987; 28: 4259
- 41 Linderman RJ. Graves DM. J. Org. Chem. 1989; 54: 661
- 42 Stavber S. Košir I. Zupan M. J. Org. Chem. 1997; 62: 4916
- 43 Matano Y. Hisanaga T. Yamada H. Kusakabe S. Nomura H. Imahori H. J. Org. Chem. 2004; 69: 8676
- 44 Matano Y. Suzuki T. Iwata T. Shinokura T. Imahori H. Bull. Chem. Soc. Jpn. 2008; 81: 1621
- 45 Cheng H. Pei Y. Leng F. Li J. Liang A. Zou D. Wu Y. Wu Y. Tetrahedron Lett. 2013; 54: 4483
- 46 Tanaka Y. Ishihara T. Konno T. J. Fluorine Chem. 2012; 137: 99
- 47 Kelly CB. Mercadante MA. Hamlin TA. Fletcher MH. Leadbeater NE. J. Org. Chem. 2012; 77: 8131
- 48 Markó IE. Giles PR. Tsukazaki M. Brown SM. Urch CJ. Science 1996; 274: 2044
- 49 Markó IE. Giles PR. Tsukazaki M. Chellé-Regnaut I. Gautier A. Brown SM. Urch CJ. J. Org. Chem. 1999; 64: 2433
- 50 Kesavan V. Bonnet-Delpon D. Bégué J.-P. Srikanth A. Chandrasekaran S. Tetrahedron Lett. 2000; 41: 3327
- 51 Mitchell L. Williamson P. Ehrlichová B. Anderson AE. Seymour VR. Ashbrook SE. Acerbi N. Daniels LM. Walton RI. Clarke ML. Wright PA. Chem. Eur. J. 2014; 20: 17185
- 52 Mei Z.-W. Omote T. Mansour M. Kawafuchi H. Takaguchi Y. Jutand A. Tsuboi S. Inokuchi T. Tetrahedron 2008; 64: 10761
- 53 Kadoh Y. Tashiro M. Oisaki K. Kanai M. Adv. Synth. Catal. 2015; 357: 2193
- 54 Blay G. Fernández I. Marco-Aleixandre A. Monje B. Pedro JR. Ruiz R. Tetrahedron 2002; 58: 8565
- 55 Krasovsky AL. Nenajdenko VG. Balenkova ES. Tetrahedron 2001; 57: 201
- 56 Kobayashi Y. Yamamoto K. Kumadaki I. Tetrahedron Lett. 1979; 20: 4071
- 57 Naumann D. Finke M. Lange H. Dukat W. Tyrra W. J. Fluorine Chem. 1992; 56: 215
- 58 Kremlev MM. Mushta AI. Tyrra W. Naumann D. Fischer HT. M. Yagupolskii YL. J. Fluorine Chem. 2007; 128: 1385
- 59 Yokoyama Y. Mochida K. Synlett 1997; 907
- 60 Krishnamurti R. Bellew DR. Prakash GK. S. J. Org. Chem. 1991; 56: 984
- 61 Wiedemann J. Heiner T. Mloston G. Prakash GK. S. Olah GA. Angew. Chem. Int. Ed. 1998; 37: 820
- 62 Singh RP. Cao G. Kirchmeier RL. Shreeve JM. J. Org. Chem. 1999; 64: 2873
- 63 Kawano Y. Kaneko N. Mukaiyama T. Bull. Chem. Soc. Jpn. 2006; 79: 1133
- 64 Rudzinski DM. Kelly CB. Leadbeater NE. Chem. Commun. 2012; 48: 9610
- 65 Allendörfer N. Es-Sayed M. Nieger M. Bräse S. Tetrahedron Lett. 2012; 53: 388
- 66 Shidlovskii AF. Golubev AS. Gusev DV. Suponitsky KY. Peregudov AS. Chkanikov ND. J. Fluorine Chem. 2012; 143: 272
- 67 Russell J. Roques N. Tetrahedron 1998; 54: 13771
- 68 Prakash GK. S. Jog PV. Batamack PT. D. Olah GA. Science 2012; 338: 1324
- 69 Zhang Y. Fujiu M. Serizawa H. Mikami K. J. Fluorine Chem. 2013; 156: 367
- 70 Chang Y. Cai C. J. Fluorine Chem. 2005; 126: 937
- 71 McGrath TF. Levine R. J. Am. Chem. Soc. 1955; 77: 3656
- 72 Chen LS. Chen GJ. Tamborski C. J. Fluorine Chem. 1981; 18: 117
- 73 Chen LS. Chen GJ. Tamborski C. J. Organomet. Chem. 1983; 251: 139
- 74 Creary X. J. Org. Chem. 1987; 52: 5026
- 75 Kerdesky FA. J. Basha A. Tetrahedron Lett. 1991; 32: 2003
- 76 Yamazaki T. Terajima T. Kawasaki-Taskasuka T. Tetrahedron 2008; 64: 2419
- 77 Simchen G. Schmidt A. Synthesis 1996; 1093
- 78 Kakino R. Shimizu I. Yamamoto A. Bull. Chem. Soc. Jpn. 2001; 74: 371
- 79 Wu W. Tian Q. Chen T. Weng Z. Chem. Eur. J. 2016; 22: 16455
- 80 Yan G. Cao X. Zheng W. Ke Q. Zhang J. Huang D. Org. Biomol. Chem. 2017; 15: 5904