Synthesis 2018; 50(15): 2936-2947
DOI: 10.1055/s-0036-1591983
special topic
© Georg Thieme Verlag Stuttgart · New York

Organophotoredox/Copper Hybrid Catalysis for Regioselective Allylic­ Aminodecarboxylation of β,γ-Unsaturated Carboxylic Acids

Anne-Doriane Manick
Graduate School of Pharmaceutical of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: oisaki@mol.f.u-tokyo.ac.jp   Email: kanai@mol.f.u-tokyo.ac.jp
,
Hirotaka Tanaka
Graduate School of Pharmaceutical of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: oisaki@mol.f.u-tokyo.ac.jp   Email: kanai@mol.f.u-tokyo.ac.jp
,
Kounosuke Oisaki*
Graduate School of Pharmaceutical of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: oisaki@mol.f.u-tokyo.ac.jp   Email: kanai@mol.f.u-tokyo.ac.jp
,
Graduate School of Pharmaceutical of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: oisaki@mol.f.u-tokyo.ac.jp   Email: kanai@mol.f.u-tokyo.ac.jp
› Author Affiliations
This work was supported by a JSPS postdoctoral fellowship (A.-D.M.), JSPS KAKENHI Grant Number JP16H01007 in Precisely Designed Catalysts with Customized Scaffolding (K.O.), and JSPS KAKENHI Grant Number JP17H06442 in Hybrid Catalysis (M.K.).
Further Information

Publication History

Received: 27 February 2018

Accepted after revision: 14 March 2018

Publication Date:
24 April 2018 (online)


Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis

Abstract

A new cooperative organophotoredox/copper catalysis allowing for the conversion of β,γ-unsaturated carboxylic acids into allylic hydrazides via radical regioselective allylic decarboxylative amination is reported. The coexistence of the copper catalyst is essential for the high yield and regioselectivity.

Supporting Information

 
  • References

  • 2 For a recent review, see: . Patra T. Maiti D. Chem. Eur. J. 2017; 23: 7382
    • 3a Arnold RT. Elmer OC. Dodson RM. J. Am. Chem. Soc. 1950; 72: 4359
    • 3b Barton DH. R. Dowlatshahi HA. Motherwell WB. Villemin D. J. Chem. Soc., Chem. Commun. 1980; 732
    • 3c Saraiva MF. Couri MR. C. Le Hyaric M. de Almeida MV. Tetrahedron 2009; 65: 3563

      For selected reviews on visible-light photoredox decarboxylative reactions, see:
    • 4a Jin Y. Fu H. Asian J. Org. Chem. 2017; 6: 368
    • 4b Rodriguez N. Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
    • 4c Wang Z.-L. Adv. Synth. Catal. 2013; 355: 2745
    • 4d Huang H. Jia K. Chen Y. ACS Catal. 2016; 6: 4983
    • 4e Xuan J. Zhang Z.-G. Xiao WJ. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 4f Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 5a Chu L. Ohta C. Zuo Z. MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
    • 5b Nawrat CC. Jamison CR. Slutskyy Y. MacMillan DW. C. Overman LE. J. Am. Chem. Soc. 2015; 137: 11270
    • 5c Yang C. Yang J.-D. Li Y.-H. Li X. Cheng J.-P. J. Org. Chem. 2016; 81: 12357
    • 5d Le Vaillant F. Wodrich MD. Waser J. Chem. Sci. 2017; 8: 1790
    • 5e Xu P. Abdukader A. Hu K. Cheng Y. Zhu C. Chem. Commun. 2014; 50: 2308
    • 5f Noble A. McCarver SJ. MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 624
    • 5g Zuo Z. Ahneman DT. Chu L. Terrett JA. Doyle AG. MacMillan DW. C. Science 2014; 345: 437
    • 5h Xu N. Li P. Xie Z. Wang L. Chem. Eur. J. 2016; 22: 2236
    • 5i Johnston CP. Smith RT. Allmendinger S. MacMillan DW. C. Nature 2016; 536: 322
    • 5j Lang SB. O’Nele KM. Tunge JA. J. Am. Chem. Soc. 2014; 136: 13606

      For selected recent examples of photoredox aminodecarboxylation, see:
    • 6a Liu J. Liu Q. Yi H. Qin C. Bai R. Qi X. Lan Y. Lei A. Angew. Chem. Int. Ed. 2014; 53: 502
    • 6b Davies J. Angelini L. Alkhalifah MA. Malet Sanz L. Sheikh NS. Leonori D. Synthesis 2018; 50: 821
    • 6c Allen LJ. Cabrera PJ. Lee M. Sanford MS. J. Am. Chem. Soc. 2014; 136: 5607
    • 6d Xu W.-T. Huang B. Dai J.-J. Xu J. Xu H.-J. Org. Lett. 2016; 18: 3114

    • For selected examples in the presence of copper, see:
    • 6e Zhao W. Wurz RP. Peters JC. Fu GC. J. Am. Chem. Soc. 2017; 139: 12153
    • 6f Yang Y.-N. Jang J.-L. Shi J. Organometallics 2017; 36: 2081
    • 6g Tlahuext-Aca A. Candish L. Garza-Sanchez RA. Glorius F. ACS Catal. 2018; 8: 1715
  • 7 Kiyokawa K. Kojima T. Hishikawa Y. Minakata S. Chem. Eur. J. 2015; 21: 15548
  • 8 Kiyokawa K. Yakata S. Kojima T. Minakata S. Org. Lett. 2014; 16: 4646
  • 9 Lang SB. Cartwright KC. Welter RS. Locascio TM. Tunge JA. Eur. J. Org. Chem. 2016; 3331
    • 10a Skubi KL. Blum TR. Yoon TP. Chem. Rev. 2016; 116: 10035
    • 10b Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 10c Levin MD. Kim S. Toste FD. ACS Cent. Sci. 2016; 2: 293
    • 11a Wei X.-F. Xie X.-W. Shimizu Y. Kanai M. J. Am. Chem. Soc. 2017; 139: 4647
    • 11b Wada R. Oisaki K. Kanai M. Shibasaki M. J. Am. Chem. Soc. 2004; 126: 8910
    • 11c Shi S.-L. Xu L.-W. Oisaki K. Kanai M. Shibasaki M. J. Am. Chem. Soc. 2010; 132: 6638
    • 11d Shibasaki M. Kanai M. Chem. Rev. 2008; 108: 2853
  • 12 For a review on the reactivity of azodicarboxylates, see: Kanzian T. Mayr H. Chem. Eur. J. 2010; 16: 11670

    • For selected examples of dialkyl azodicarboxylates used for carbon radical trapping, see:
    • 13a Waser J. Gaspar B. Nambu H. Carreira EM. J. Am. Chem. Soc. 2006; 128: 11693
    • 13b Amaoka Y. Kamijo S. Hoshikawa T. Inoue M. J. Org. Chem. 2012; 77: 9959
    • 14a Fukuzumi S. Kotani H. Ohkubo K. Ogo S. Tkachenko NV. Lemmetyinen H. J. Am. Chem. Soc. 2004; 126: 1600
    • 14b Joshi-Pangu A. Lévesque F. Roth HG. Oliver SF. Campeau L.-C. Nicewicz D. DiRocco DA. J. Org. Chem. 2016; 81: 7244
    • 15a Aspinall HC. Browning AF. Greeves N. Ravenscroft P. Tetrahedron Lett. 1994; 35: 4639
    • 15b Costa AL. Piazza MG. Tagliavini E. Trombini C. Umani-Ronchi A. J. Am. Chem. Soc. 1993; 115: 7001
    • 15c Evans DA. Yimon A. J. Am. Chem. Soc. 2006; 128: 11034
  • 16 Magnus P. Garizi N. Seibert KA. Ornholt A. Org. Lett. 2009; 11: 5646

    • For selected reviews on the importance of the 1,2-amino alcohol moiety, see:
    • 17a Ager DJ. Prakash I. Schaad DR. Chem. Rev. 1996; 96: 835
    • 17b Studer A. Synthesis 1996; 793
  • 19 The oxidation potential of carboxylate is E(RCO2 /RCO2 ) = +1.1 to +1.5 V vs SCE in MeCN; Fukuzumi acridinium E 1/2 red = +2.06 V vs SCE in MeCN.

    • For selected examples of the activation of azodicarboxylates by copper, see:
    • 20a Aburel PS. Zhuang W. Hazell RG. Jørgensen KA. Org. Biomol. Chem. 2005; 3: 2344
    • 20b Marigo M. Kumaragurubaran N. Jørgensen KA. Synthesis 2005; 957
  • 21 Qi X. Zhu L. Bai R. Lan Y. Sci. Rep. 2017; 7: 43579
    • 22a Gaspard-Iloughmane H. Le Roux C. In Acid Catalysis in Modern Organic Synthesis . Vol. 2. Yamamoto H. Ishihara K. Wiley-VCH; Weinheim: 2008: 551
    • 22b Takahashi T. Li Y. Ito T. Xu F. Nakajima K. Liu Y. J. Am. Chem. Soc. 2002; 124: 1144
  • 23 Waser J. Gonzales-Gomez JC. Nambu H. Huber P. Carreira EM. Org. Lett. 2005; 7: 4249