Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(15): 2936-2947
DOI: 10.1055/s-0036-1591983
DOI: 10.1055/s-0036-1591983
special topic
Organophotoredox/Copper Hybrid Catalysis for Regioselective Allylic Aminodecarboxylation of β,γ-Unsaturated Carboxylic Acids
This work was supported by a JSPS postdoctoral fellowship (A.-D.M.), JSPS KAKENHI Grant Number JP16H01007 in Precisely Designed Catalysts with Customized Scaffolding (K.O.), and JSPS KAKENHI Grant Number JP17H06442 in Hybrid Catalysis (M.K.).Further Information
Publication History
Received: 27 February 2018
Accepted after revision: 14 March 2018
Publication Date:
24 April 2018 (online)
Published as part of the Special Topic Modern Radical Methods and their Strategic Applications in Synthesis
Abstract
A new cooperative organophotoredox/copper catalysis allowing for the conversion of β,γ-unsaturated carboxylic acids into allylic hydrazides via radical regioselective allylic decarboxylative amination is reported. The coexistence of the copper catalyst is essential for the high yield and regioselectivity.
Key words
photoredox catalysis - copper - decarboxylation - β,γ-unsaturated carboxylic acids - allylic hydrazides - dual catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591983.
- Supporting Information
-
References
- 1a Li H. Miao T. Wang M. Li P. Wang L. Synlett 2016; 27: 1635
- 1b Straathof AJ. J. Chem. Rev. 2014; 114: 1871
- 1c Gallezot P. Chem. Soc. Rev. 2012; 41: 1538
- 2 For a recent review, see: . Patra T. Maiti D. Chem. Eur. J. 2017; 23: 7382
- 3a Arnold RT. Elmer OC. Dodson RM. J. Am. Chem. Soc. 1950; 72: 4359
- 3b Barton DH. R. Dowlatshahi HA. Motherwell WB. Villemin D. J. Chem. Soc., Chem. Commun. 1980; 732
- 3c Saraiva MF. Couri MR. C. Le Hyaric M. de Almeida MV. Tetrahedron 2009; 65: 3563
- 4a Jin Y. Fu H. Asian J. Org. Chem. 2017; 6: 368
- 4b Rodriguez N. Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
- 4c Wang Z.-L. Adv. Synth. Catal. 2013; 355: 2745
- 4d Huang H. Jia K. Chen Y. ACS Catal. 2016; 6: 4983
- 4e Xuan J. Zhang Z.-G. Xiao WJ. Angew. Chem. Int. Ed. 2015; 54: 15632
- 4f Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 5a Chu L. Ohta C. Zuo Z. MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
- 5b Nawrat CC. Jamison CR. Slutskyy Y. MacMillan DW. C. Overman LE. J. Am. Chem. Soc. 2015; 137: 11270
- 5c Yang C. Yang J.-D. Li Y.-H. Li X. Cheng J.-P. J. Org. Chem. 2016; 81: 12357
- 5d Le Vaillant F. Wodrich MD. Waser J. Chem. Sci. 2017; 8: 1790
- 5e Xu P. Abdukader A. Hu K. Cheng Y. Zhu C. Chem. Commun. 2014; 50: 2308
- 5f Noble A. McCarver SJ. MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 624
- 5g Zuo Z. Ahneman DT. Chu L. Terrett JA. Doyle AG. MacMillan DW. C. Science 2014; 345: 437
- 5h Xu N. Li P. Xie Z. Wang L. Chem. Eur. J. 2016; 22: 2236
- 5i Johnston CP. Smith RT. Allmendinger S. MacMillan DW. C. Nature 2016; 536: 322
- 5j Lang SB. O’Nele KM. Tunge JA. J. Am. Chem. Soc. 2014; 136: 13606
- 6a Liu J. Liu Q. Yi H. Qin C. Bai R. Qi X. Lan Y. Lei A. Angew. Chem. Int. Ed. 2014; 53: 502
- 6b Davies J. Angelini L. Alkhalifah MA. Malet Sanz L. Sheikh NS. Leonori D. Synthesis 2018; 50: 821
- 6c Allen LJ. Cabrera PJ. Lee M. Sanford MS. J. Am. Chem. Soc. 2014; 136: 5607
- 6d Xu W.-T. Huang B. Dai J.-J. Xu J. Xu H.-J. Org. Lett. 2016; 18: 3114
- 6e Zhao W. Wurz RP. Peters JC. Fu GC. J. Am. Chem. Soc. 2017; 139: 12153
- 6f Yang Y.-N. Jang J.-L. Shi J. Organometallics 2017; 36: 2081
- 6g Tlahuext-Aca A. Candish L. Garza-Sanchez RA. Glorius F. ACS Catal. 2018; 8: 1715
- 7 Kiyokawa K. Kojima T. Hishikawa Y. Minakata S. Chem. Eur. J. 2015; 21: 15548
- 8 Kiyokawa K. Yakata S. Kojima T. Minakata S. Org. Lett. 2014; 16: 4646
- 9 Lang SB. Cartwright KC. Welter RS. Locascio TM. Tunge JA. Eur. J. Org. Chem. 2016; 3331
- 10a Skubi KL. Blum TR. Yoon TP. Chem. Rev. 2016; 116: 10035
- 10b Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 10c Levin MD. Kim S. Toste FD. ACS Cent. Sci. 2016; 2: 293
- 11a Wei X.-F. Xie X.-W. Shimizu Y. Kanai M. J. Am. Chem. Soc. 2017; 139: 4647
- 11b Wada R. Oisaki K. Kanai M. Shibasaki M. J. Am. Chem. Soc. 2004; 126: 8910
- 11c Shi S.-L. Xu L.-W. Oisaki K. Kanai M. Shibasaki M. J. Am. Chem. Soc. 2010; 132: 6638
- 11d Shibasaki M. Kanai M. Chem. Rev. 2008; 108: 2853
- 12 For a review on the reactivity of azodicarboxylates, see: Kanzian T. Mayr H. Chem. Eur. J. 2010; 16: 11670
- 13a Waser J. Gaspar B. Nambu H. Carreira EM. J. Am. Chem. Soc. 2006; 128: 11693
- 13b Amaoka Y. Kamijo S. Hoshikawa T. Inoue M. J. Org. Chem. 2012; 77: 9959
- 14a Fukuzumi S. Kotani H. Ohkubo K. Ogo S. Tkachenko NV. Lemmetyinen H. J. Am. Chem. Soc. 2004; 126: 1600
- 14b Joshi-Pangu A. Lévesque F. Roth HG. Oliver SF. Campeau L.-C. Nicewicz D. DiRocco DA. J. Org. Chem. 2016; 81: 7244
- 15a Aspinall HC. Browning AF. Greeves N. Ravenscroft P. Tetrahedron Lett. 1994; 35: 4639
- 15b Costa AL. Piazza MG. Tagliavini E. Trombini C. Umani-Ronchi A. J. Am. Chem. Soc. 1993; 115: 7001
- 15c Evans DA. Yimon A. J. Am. Chem. Soc. 2006; 128: 11034
- 16 Magnus P. Garizi N. Seibert KA. Ornholt A. Org. Lett. 2009; 11: 5646
- 17a Ager DJ. Prakash I. Schaad DR. Chem. Rev. 1996; 96: 835
- 17b Studer A. Synthesis 1996; 793
- 18a Fukuzumi S. Ohkubo K. Suenobu T. Acc. Chem. Res. 2014; 47: 1455
- 18b Nicewicz DA. Hamilton DS. Synlett 2014; 25: 1191
- 18c Cassani C. Bergonzini G. Wallentin C.-J. Org. Lett. 2014; 16: 4228
- 18d Griffin JD. Zeller MA. Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 11340
- 19 The oxidation potential of carboxylate is E(RCO2 •/RCO2 –) = +1.1 to +1.5 V vs SCE in MeCN; Fukuzumi acridinium E 1/2 red = +2.06 V vs SCE in MeCN.
- 20a Aburel PS. Zhuang W. Hazell RG. Jørgensen KA. Org. Biomol. Chem. 2005; 3: 2344
- 20b Marigo M. Kumaragurubaran N. Jørgensen KA. Synthesis 2005; 957
- 21 Qi X. Zhu L. Bai R. Lan Y. Sci. Rep. 2017; 7: 43579
- 22a Gaspard-Iloughmane H. Le Roux C. In Acid Catalysis in Modern Organic Synthesis . Vol. 2. Yamamoto H. Ishihara K. Wiley-VCH; Weinheim: 2008: 551
- 22b Takahashi T. Li Y. Ito T. Xu F. Nakajima K. Liu Y. J. Am. Chem. Soc. 2002; 124: 1144
- 23 Waser J. Gonzales-Gomez JC. Nambu H. Huber P. Carreira EM. Org. Lett. 2005; 7: 4249
For selected reviews on visible-light photoredox decarboxylative reactions, see:
For selected recent examples of photoredox aminodecarboxylation, see:
For selected examples in the presence of copper, see:
For selected examples of dialkyl azodicarboxylates used for carbon radical trapping, see:
For selected reviews on the importance of the 1,2-amino alcohol moiety, see:
For selected examples of the activation of azodicarboxylates by copper, see: