Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(13): 2624-2630
DOI: 10.1055/s-0036-1591990
DOI: 10.1055/s-0036-1591990
paper
An Easy Access to Sulfur Derivatives of 6,8-Dioxabicyclo[3.2.1]octanes, Naturally Abundant Scaffolds
This work was financially supported by a grant from the Russian Scientific Foundation (Project No. 14-13-00588).Further Information
Publication History
Received: 26 January 2018
Accepted after revision: 21 March 2018
Publication Date:
03 May 2018 (online)
Abstract
Sulfur derivatives of 6,8-dioxabicyclo[3.2.1]octanes related to a number of natural products have been synthesized by the click hydrothiolation (AIBN or UV irradiation) of 7-methylene-6,8-dioxabicyclo[3.2.1]octanes, assembled from acetylene and ketones in a one-pot transition-metal-free synthetic operation. An unusual feature of this free-radical reaction is that it is accelerated in the presence of bases due to involvement of the latter in a competition between the thiol addition and proton-catalyzed isomerization of the starting bicyclooctanes.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591990.
- Supporting Information
-
References
- 1a Kiyota H. Dixon DJ. Luscombe CK. Hettstedt S. Ley SV. Org. Lett. 2002; 4: 3223
- 1b Ren J. Wang J. Tong R. Org. Lett. 2015; 17: 744
- 1c Czubatka-Bienkowska A. Sarnik J. Macieja A. Galita G. Witczak ZJ. Poplawski T. Bioorg. Med. Chem. Lett. 2017; 27: 2713
- 2a Mitchell SS. Rhodes D. Bushman FD. Faulkner DJ. Org. Lett. 2000; 2: 1605
- 2b Marvin CC. Voight EA. Burke SD. Org. Lett. 2007; 9: 5357
- 3a Francke W. Schröder W. Curr. Org. Chem. 1999; 3: 407
- 3b Yus M. Ramon DJ. Prieto O. Eur. J. Org. Chem. 2003; 2745
- 4 Vanderwel D. Oehlschlager AC. J. Am. Chem. Soc. 1992; 114: 5081
- 5 Mori K. Top. Curr. Chem. 2004; 239: 1
- 6 Gore WE. Pearce GT. Silverstein RM. J. Org. Chem. 1975; 40: 1705
- 7a Rasmussen LE. L. Greenwood DR. Chem. Senses 2003; 28: 433
- 7b Greenwood DR. Comeskey D. Hunt MB. Rasmussen LE. L. Nature 2005; 438: 1097
- 8 Liu J.-H. Jin Y. Long Y.-Q. Tetrahedron 2010; 66: 1267
- 9 Zhang W. Tong R. J. Org. Chem. 2016; 81: 2203
- 10 Trofimov BA. Schmidt EYu. Ushakov IA. Mikhaleva AI. Zorina NV. Protsuk NI. Senotrusova EYu. Skital’tseva EV. Kazheva ON. Aleksandrov GG. Dyachenko OA. Eur. J. Org. Chem. 2009; 5142
- 11 Ananikov VP. Zalesskiy SS. Beletskaya IP. Curr. Org. Synth. 2011; 8: 2
- 12 Northrop BH. Coffey RN. J. Am. Chem. Soc. 2012; 134: 13804
- 13 Torrents E. Aloy P. Gibert I. Rodriguez-Trelles F. J. Mol. Evol. 2002; 55: 138
- 14 Kolberg M. Strand KR. Graff P. Andersson KK. Biochim. Biophys. Acta 2004; 1699: 1
- 15 Denes F. Pichowicz M. Povie G. Renaud P. Chem. Rev. 2014; 114: 2587
- 16 Nedolya NA. Trofimov BA. Sulfur Rep. 1994; 15: 339
- 17 Trofimov BA. Schmidt EYu. Bidusenko IA. Cherimichkina NA. Russ. J. Org. Chem. 2016; 52: 1056
- 18 Schmidt EYu. Trofimov BA. Zorina NV. Mikhaleva AI. Ushakov IA. Skital’tseva EV. Kazheva ON. Alexandrov GG. Dyachenko OA. Eur. J. Org. Chem. 2010; 6727
- 19 See the Supporting Information for an X-ray structural analysis of major isomer 4b. CCDC 1584866 contains the supplementary crystallographic data for major isomer 4b. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.