Subscribe to RSS
DOI: 10.1055/s-0036-1592003
Photooxidative Keto-Trifluoromethylation of Styrenes by Means of an Anthraquinone-Based Organocatalyst
This work was supported by Takeda Science Foundation.Publication History
Received: 26 February 2018
Accepted after revision: 03 April 2018
Publication Date:
18 May 2018 (online)

Published as part of the Special Topic Modern Coupling Approaches and their Strategic Applications in Synthesis
Abstract
α-Trifluoromethyl ketones are versatile building blocks for the synthesis of various trifluoromethyl-functionalized molecules. Although there are significant advantages in the development of methods toward direct transformations of styrenes into α-trifluoromethyl ketones, most procedures leading to α-trifluoromethyl ketones require heavy- or transition-metal-based complexes. Herein, a novel method is developed for the synthesis of α-trifluoromethyl ketones via anthraquinone-catalyzed photooxidative keto-trifluoromethylation of styrenes with the readily available Langlois reagent (CF3SO2Na) under an oxygen atmosphere. The reactions proceed smoothly to give the products in moderate to excellent yield with good selectivity.
Key words
anthraquinone - trifluoromethylation - trifluoromethyl radical - radical reaction - photoreactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1592003.
- Supporting Information
-
References
- 1a Isanbor C. O’Hagan D. J. Fluorine Chem. 2006; 127: 303
- 1b Kirk KL. J. Fluorine Chem. 2006; 127: 1013
- 1c Muller K. Faeh C. Diederich F. Science 2007; 317: 1881
- 1d Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 2a Fluorine in Medicinal Chemistry and Chemical Biology. Ojima I. Wiley; Chichester: 2009
- 2b Bégué J.-P. Bonnet-Delphon D. Bioorganic and Medicinal Chemistry of Fluorine . John Wiley & Sons; Hoboken: 2008
- 3a Ma J.-A. Cahard D. Chem. Rev. 2004; 104: 6119
- 3b Shimizu M. Hiyama T. Angew. Chem. Int. Ed. 2004; 44: 214
- 3c Ma J.-A. Cahard D. J. Fluorine Chem. 2007; 128: 975
- 3d Prakash GK. Hu J. Acc. Chem. Res. 2007; 40: 921
- 3e Ma J.-A. Cahard D. Chem. Rev. 2008; 108: PR1
- 3f Uneyama K. Katagiri T. Amii H. Acc. Chem. Res. 2008; 41: 817
- 3g Kumadaki I. Ando A. Sato K. Tarui A. Omote M. Synthesis 2010; 1865
- 3h Shibata N. Matsnev A. Cahard D. Beilstein J. Org. Chem. 2010; 6: 65
- 3i Dilman AD. Levin VV. Eur. J. Org. Chem. 2011; 831
- 3j Furuya T. Kamlet AS. Ritter T. Nature 2011; 473: 470
- 3k Qing F.-L. Zheng F. Synlett 2011; 1052
- 3l Roy S. Gregg BT. Gribble GW. Le V.-D. Roy S. Tetrahedron 2011; 67: 2161
- 3m Tomashenko OA. Grushin VV. Chem. Rev. 2011; 111: 4475
- 3n Macé Y. Magnier E. Eur. J. Org. Chem. 2012; 2479
- 3o Soloshonok V. Aceña J. Sorochinsky A. Synthesis 2012; 44: 1591
- 3p Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
- 3q Liu H. Gu Z. Jiang X. Adv. Synth. Catal. 2013; 355: 617
- 3r Zhang C.-P. Chen Q.-Y. Guo Y. Xiao J.-C. Gu Y.-C. Coord. Chem. Rev. 2014; 261: 28
- 4a Alvernhe G. Langlois B. Laurent A. Le Drean I. Selmi A. Weissenfels M. Tetrahedron Lett. 1991; 32: 643
- 4b Schenck HA. Lenkowski PW. Choudhury-Mukherjee I. Ko SH. Stables JP. Patel MK. Brown ML. Bioorg. Med. Chem. 2004; 12: 979
- 4c Muzalevskiy VM. Nenajdenko VG. Rulev AY. Ushakov IA. Romanenko GV. Shastin AV. Balenkova ES. Haufe G. Tetrahedron 2009; 65: 6991
- 4d Rudler H. Parlier A. Denneval C. Herson P. J. Fluorine Chem. 2010; 131: 738
- 4e Ye Y. Kunzi SA. Sanford MS. Org. Lett. 2012; 14: 4979
- 4f Li Z. Cui Z. Liu Q. Org. Lett. 2013; 15: 406
- 5a Umemoto T. Ishihara S. J. Am. Chem. Soc. 1993; 115: 2156
- 5b Umemoto T. Adachi K. J. Org. Chem. 1994; 59: 5692
- 5c Ma JA. Cahard D. J. Org. Chem. 2003; 68: 8726
- 5d Noritake S. Shibata N. Nomura Y. Huang Y. Matsnev A. Nakamura S. Toru T. Cahard D. Org. Biomol. Chem. 2009; 7: 3599
- 5e Allen AE. Macmillan DW. C. J. Am. Chem. Soc. 2010; 132: 4986
- 6a Miura K. Taniguchi M. Nozaki K. Oshima K. Utimoto K. Tetrahedron Lett. 1990; 31: 6391
- 6b Langlois BR. Laurent E. Roidot N. Tetrahedron Lett. 1992; 33: 1291
- 6c Itoh Y. Mikami K. Org. Lett. 2005; 7: 4883
- 6d Itoh Y. Mikami K. Org. Lett. 2005; 7: 649
- 6e Itoh Y. Houk KN. Mikami K. J. Org. Chem. 2006; 71: 8918
- 6f Itoh Y. Mikami K. J. Fluorine Chem. 2006; 127: 539
- 6g Itoh Y. Mikami K. Tetrahedron 2006; 62: 7199
- 6h Mikami K. Tomita Y. Ichikawa Y. Amikura K. Itoh Y. Org. Lett. 2006; 8: 4671
- 6i Nagib DA. Scott ME. MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 10875
- 6j Pham PV. Nagib DA. MacMillan DW. C. Angew. Chem. Int. Ed. 2011; 50: 6119
- 6k Jiang H. Cheng Y. Zhang Y. Yu S. Eur. J. Org. Chem. 2013; 5485
- 6l Li L. Chen QY. Guo Y. J. Org. Chem. 2014; 79: 5145
- 6m Wang YF. Lonca GH. Chiba S. Angew. Chem. Int. Ed. 2014; 53: 1067
- 6n Su X. Huang H. Yuan Y. Li Y. Angew. Chem. Int. Ed. 2017; 56: 1338
- 6o Kawamoto T. Sasaki R. Kamimura A. Angew. Chem. Int. Ed. 2017; 56: 1342
- 7 For an example of nucleophilic trifluoromethylation of carbonyl compounds, see: Novak P. Lishchynskyi A. Grushin VV. J. Am. Chem. Soc. 2012; 134: 16167
- 8 Zhang CP. Wang ZL. Chen QY. Zhang CT. Gu YC. Xiao JC. Chem. Commun. 2011; 47: 6632
- 9 Deb A. Manna S. Modak A. Patra T. Maity S. Maiti D. Angew. Chem. Int. Ed. 2013; 52: 9747
- 10 Luo X.-Z. Luo H.-Q. Zhang Z.-P. Dong W. Synlett 2014; 25: 1307
- 11 Tomita R. Yasu Y. Koike T. Akita M. Angew. Chem. Int. Ed. 2014; 53: 7144
- 12 Li L. Chen Q.-Y. Guo Y. J. Fluorine Chem. 2014; 167: 79
- 13 Cui L. Matusaki Y. Tada N. Miura T. Uno B. Itoh A. Adv. Synth. Catal. 2013; 355: 2203
- 14 Yang Y. Liu Y. Jiang Y. Zhang Y. Vicic DA. J. Org. Chem. 2015; 80: 6639
- 15 Tada N. Ban K. Yoshida M. Hirashima S. Miura T. Itoh A. Tetrahedron Lett. 2010; 51: 6098
- 16 Maji A. Hazra A. Maiti D. Org. Lett. 2014; 16: 4524
- 17 Lu Q. Liu C. Huang Z. Ma Y. Zhang J. Lei A. Chem. Commun. 2014; 50: 14101
- 18 Yasu Y. Koike T. Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567
- 19 van Ramesdonk HJ. Bakker BH. Groeneveld MM. Verhoeven JW. Allen BD. Rostron JP. J. Phys. Chem. A 2006; 110: 13145
For selected recent reviews on C–CF3 bond-forming reaction, see:
For examples of electrophilic trifluoromethylation of carbonyl compounds, see:
For examples of radical trifluoromethylation of carbonyl compounds, see: