Journal of Pediatric Neuroradiology 2016; 05(03): 150-163
DOI: 10.1055/s-0036-1593421
Review Article
Georg Thieme Verlag KG Stuttgart • New York

Craniosynostosis Syndromes: Genetics to Imaging

Mai-Lan Ho
1   Division of Neuroradiology, Mayo Clinic, Rochester, Minnesota, United States
,
Samir Mardini
2   Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States
,
Nicholas M. Wetjen
3   Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, United States
› Author Affiliations
Further Information

Publication History

Publication Date:
03 October 2016 (online)

Abstract

Craniosynostosis is seen in 1 of every 2,000 births, with associated craniofacial deformities that produce significant anatomic and functional impairment. In isolated craniosynostosis, the classic clinical appearances and surgical approaches are well established. However, syndromic craniosynostosis presents with compound anatomic malformations and multisystem involvement, greatly complicating diagnosis and therapy. In such cases, imaging and genomic analysis can assist greatly in preoperative diagnosis and follow-up. This article will review the current literature on radiologic manifestations and genetic etiologies of major craniosynostosis syndromes.

 
  • References

  • 1 Singh S, Groves AK. The molecular basis of craniofacial placode development. Wiley Interdiscip Rev Dev Biol 2016; 5 (3) 363-376
  • 2 Hall BK. Summarizing craniofacial genetics and developmental biology (SCGDB). Am J Med Genet A 2014; 164A (4) 884-891
  • 3 Fish JL. Developmental mechanisms underlying variation in craniofacial disease and evolution. Dev Biol 2016; 415 (2) 188-197
  • 4 Castaldo G, Cerritelli F. Craniofacial growth: evolving paradigms. Cranio 2015; 33 (1) 23-31
  • 5 Twigg SR, Wilkie AO. New insights into craniofacial malformations. Hum Mol Genet 2015; 24 (R1) R50-R59
  • 6 Richtsmeier JT, Flaherty K. Hand in glove: brain and skull in development and dysmorphogenesis. Acta Neuropathol 2013; 125 (4) 469-489
  • 7 Bronfin DR. Misshapen heads in babies: position or pathology?. Ochsner J 2001; 3 (4) 191-199
  • 8 Kiesler J, Ricer R. The abnormal fontanel. Am Fam Physician 2003; 67 (12) 2547-2552
  • 9 Glass RB, Fernbach SK, Norton KI, Choi PS, Naidich TP. The infant skull: a vault of information. Radiographics 2004; 24 (2) 507-522
  • 10 Flaherty K, Singh N, Richtsmeier JT. Understanding craniosynostosis as a growth disorder. Wiley Interdiscip Rev Dev Biol 2016; 5 (4) 429-459
  • 11 Heuzé Y, Boyadjiev SA, Marsh JL , et al. New insights into the relationship between suture closure and craniofacial dysmorphology in sagittal nonsyndromic craniosynostosis. J Anat 2010; 217 (2) 85-96
  • 12 Boyadjiev SA ; International Craniosynostosis Consortium. Genetic analysis of non-syndromic craniosynostosis. Orthod Craniofac Res 2007; 10 (3) 129-137
  • 13 Lattanzi W, Bukvic N, Barba M , et al. Genetic basis of single-suture synostoses: genes, chromosomes and clinical implications. Childs Nerv Syst 2012; 28 (9) 1301-1310
  • 14 Beederman M, Farina EM, Reid RR. Molecular basis of cranial suture biology and disease: Osteoblastic and osteoclastic perspectives. Genes Dis 2014; 1 (1) 120-125
  • 15 Bernardini C, Barba M, Tamburrini G , et al. Gene expression profiling in human craniosynostoses: a tool to investigate the molecular basis of suture ossification. Childs Nerv Syst 2012; 28 (9) 1295-1300
  • 16 Bonaventure J, El Ghouzzi V. Molecular and cellular bases of syndromic craniosynostoses. Expert Rev Mol Med 2003; 5 (4) 1-17
  • 17 Passos-Bueno MR, Serti Eacute AE, Jehee FS, Fanganiello R, Yeh E. Genetics of craniosynostosis: genes, syndromes, mutations and genotype-phenotype correlations. Front Oral Biol 2008; 12: 107-143
  • 18 Panigrahi I. Craniosynostosis genetics: The mystery unfolds. Indian J Hum Genet 2011; 17 (2) 48-53
  • 19 Müller U, Steinberger D, Kunze S. Molecular genetics of craniosynostotic syndromes. Graefes Arch Clin Exp Ophthalmol 1997; 235 (9) 545-550
  • 20 Twigg SR, Wilkie AO. A genetic-pathophysiological framework for craniosynostosis. Am J Hum Genet 2015; 97 (3) 359-377
  • 21 Rice DP, Aberg T, Chan Y , et al. Integration of FGF and TWIST in calvarial bone and suture development. Development 2000; 127 (9) 1845-1855
  • 22 Iseki S, Wilkie AO, Morriss-Kay GM. Fgfr1 and Fgfr2 have distinct differentiation- and proliferation-related roles in the developing mouse skull vault. Development 1999; 126 (24) 5611-5620
  • 23 Saarimäki-Vire J, Peltopuro P, Lahti L , et al. Fibroblast growth factor receptors cooperate to regulate neural progenitor properties in the developing midbrain and hindbrain. J Neurosci 2007; 27 (32) 8581-8592
  • 24 Reimers D, López-Toledano MA, Mason I , et al. Developmental expression of fibroblast growth factor (FGF) receptors in neural stem cell progeny. Modulation of neuronal and glial lineages by basic FGF treatment. Neurol Res 2001; 23 (6) 612-621
  • 25 Zhang Y, Gorry MC, Post JC, Ehrlich GD. Genomic organization of the human fibroblast growth factor receptor 2 (FGFR2) gene and comparative analysis of the human FGFR gene family. Gene 1999; 230 (1) 69-79
  • 26 Aldridge K, Marsh JL, Govier D, Richtsmeier JT. Central nervous system phenotypes in craniosynostosis. J Anat 2002; 201 (1) 31-39
  • 27 Raybaud C, Di Rocco C. Brain malformation in syndromic craniosynostoses, a primary disorder of white matter: a review. Childs Nerv Syst 2007; 23 (12) 1379-1388
  • 28 Coll G, Arnaud E, Collet C, Brunelle F, Sainte-Rose C, Di Rocco F. Skull base morphology in fibroblast growth factor receptor type 2-related faciocraniosynostosis: a descriptive analysis. Neurosurgery 2015; 76 (5) 571-583 , discussion 583
  • 29 Liu C, Cui Y, Luan J, Zhou X, Han J. The molecular and cellular basis of Apert syndrome. Intractable Rare Dis Res 2013; 2 (4) 115-122
  • 30 Suzuki H, Suda N, Shiga M , et al. Apert syndrome mutant FGFR2 and its soluble form reciprocally alter osteogenesis of primary calvarial osteoblasts. J Cell Physiol 2012; 227 (9) 3267-3277
  • 31 Breik O, Mahindu A, Moore MH, Molloy CJ, Santoreneos S, David DJ. Central nervous system and cervical spine abnormalities in Apert syndrome. Childs Nerv Syst 2016; 32 (5) 833-838
  • 32 Fernandes MB, Maximino LP, Perosa GB, Abramides DV, Passos-Bueno MR, Yacubian-Fernandes A. Apert and Crouzon syndromes-Cognitive development, brain abnormalities, and molecular aspects. Am J Med Genet A 2016; 170 (6) 1532-1537
  • 33 Helman SN, Badhey A, Kadakia S, Myers E. Revisiting Crouzon syndrome: reviewing the background and management of a multifaceted disease. Oral Maxillofac Surg 2014; 18 (4) 373-379
  • 34 Foo R, Guo Y, McDonald-McGinn DM, Zackai EH, Whitaker LA, Bartlett SP. The natural history of patients treated for TWIST1-confirmed Saethre-Chotzen syndrome. Plast Reconstr Surg 2009; 124 (6) 2085-2095
  • 35 Tahiri Y, Bastidas N, McDonald-McGinn DM , et al. New pattern of sutural synostosis associated with TWIST gene mutation and Saethre-Chotzen syndrome: peace sign synostosis. J Craniofac Surg 2015; 26 (5) 1564-1567
  • 36 di Rocco F, Benoit A, Vigneron J , et al. Y-craniosynostosis by premature fusion of the metopic and coronal sutures: a new nosological entity or a variety of Saethre-Chotzen syndrome?. Birth Defects Res A Clin Mol Teratol 2015; 103 (4) 306-310
  • 37 Freitas EC, Nascimento SR, de Mello MP, Gil-da-Silva-Lopes VL. Q289P mutation in FGFR2 gene causes Saethre-Chotzen syndrome: some considerations about familial heterogeneity. Cleft Palate Craniofac J 2006; 43 (2) 142-147
  • 38 Cai J, Shoo BA, Sorauf T, Jabs EW. A novel mutation in the TWIST gene, implicated in Saethre-Chotzen syndrome, is found in the original case of Robinow-Sorauf syndrome. Clin Genet 2003; 64 (1) 79-82
  • 39 Kim SH, Kim AR, Choi HS , et al. Molecular etiology of hereditary single-side deafness: its association with pigmentary disorders and Waardenburg syndrome. Medicine (Baltimore) 2015; 94 (43) e1817
  • 40 Wollnik B, Tukel T, Uyguner O , et al. Homozygous and heterozygous inheritance of PAX3 mutations causes different types of Waardenburg syndrome. Am J Med Genet A 2003; 122A (1) 42-45
  • 41 Sólia-Nasser L, de Aquino SN, Paranaíba LM , et al. Waardenburg syndrome type I: Dental phenotypes and genetic analysis of an extended family. Med Oral Patol Oral Cir Bucal 2016; 21 (3) e321-e327
  • 42 Chen Y, Yang F, Zheng H , et al. Clinical and genetic investigation of families with type II Waardenburg syndrome. Mol Med Rep 2016; 13 (3) 1983-1988
  • 43 Zazo Seco C, Serrão de Castro L, van Nierop JW , et al; Baylor-Hopkins Center for Mendelian Genomics. Allelic mutations of kitlg, encoding KIT ligand, cause asymmetric and unilateral hearing loss and Waardenburg syndrome type 2. Am J Hum Genet 2015; 97 (5) 647-660
  • 44 Wang HH, Chen HS, Li HB , et al. Identification and functional analysis of a novel mutation in the SOX10 gene associated with Waardenburg syndrome type IV. Gene 2014; 538 (1) 36-41
  • 45 Tüysüz B, Collin A, Arapoğlu M, Suyugül N. Clinical variability of Waardenburg-Shah syndrome in patients with proximal 13q deletion syndrome including the endothelin-B receptor locus. Am J Med Genet A 2009; 149A (10) 2290-2295
  • 46 Shamseldin HE, Rahbeeni Z, Alkuraya FS. Perturbation of the consensus activation site of endothelin-3 leads to Waardenburg syndrome type IV. Am J Med Genet A 2010; 152A (7) 1841-1843
  • 47 Wiwanitkit V. FGFR mutation in Pfeiffer syndrome. J Craniofac Surg 2013; 24 (4) 1503
  • 48 Cornejo-Roldan LR, Roessler E, Muenke M. Analysis of the mutational spectrum of the FGFR2 gene in Pfeiffer syndrome. Hum Genet 1999; 104 (5) 425-431
  • 49 Vogels A, Fryns JP. Pfeiffer syndrome. Orphanet J Rare Dis 2006; 1: 19
  • 50 Villanueva C, de Roux N. FGFR1 mutations in Kallmann syndrome. Front Horm Res 2010; 39: 51-61
  • 51 Simonis N, Migeotte I, Lambert N , et al. FGFR1 mutations cause Hartsfield syndrome, the unique association of holoprosencephaly and ectrodactyly. J Med Genet 2013; 50 (9) 585-592
  • 52 White KE, Cabral JM, Davis SI , et al. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet 2005; 76 (2) 361-367
  • 53 Robinow M, Sorauf TJ. Acrocephalopolysyndactyly, type Noack, in a large kindred. Birth Defects Orig Artic Ser 1975; 11 (5) 99-106
  • 54 Stewart RE, Dixon G, Cohen A. The pathogenesis of premature craniosynostosis in acrocephalosyndactyly (Apert's syndrome). A reconsideration. Plast Reconstr Surg 1977; 59 (5) 699-707
  • 55 Jenkins D, Baynam G, De Catte L , et al. Carpenter syndrome: extended RAB23 mutation spectrum and analysis of nonsense-mediated mRNA decay. Hum Mutat 2011; 32 (4) E2069-E2078
  • 56 Kadakia S, Helman SN, Healy NJ, Saman M, Wood-Smith D. Carpenter syndrome: a review for the craniofacial surgeon. J Craniofac Surg 2014; 25 (5) 1653-1657
  • 57 Cohen DM, Green JG, Miller J, Gorlin RJ, Reed JA. Acrocephalopolysyndactyly type II—Carpenter syndrome: clinical spectrum and an attempt at unification with Goodman and Summit syndromes. Am J Med Genet 1987; 28 (2) 311-324
  • 58 Sakati N, Nyhan WL, Tisdale WK. A new syndrome with acrocephalopolysyndactyly, cardiac disease, and distinctive defects of the ear, skin, and lower limbs. J Pediatr 1971; 79 (1) 104-109
  • 59 Goodman RM, Sternberg M, Shem-Tov Y, Katznelson MB, Hertz M, Rotem Y. Acrocephalopolysyndactyly type IV: a new genetic syndrome in 3 sibs. Clin Genet 1979; 15 (3) 209-214
  • 60 Park WJ, Meyers GA, Li X , et al. Novel FGFR2 mutations in Crouzon and Jackson-Weiss syndromes show allelic heterogeneity and phenotypic variability. Hum Mol Genet 1995; 4 (7) 1229-1233
  • 61 Tartaglia M, Di Rocco C, Lajeunie E, Valeri S, Velardi F, Battaglia PA. Jackson-Weiss syndrome: identification of two novel FGFR2 missense mutations shared with Crouzon and Pfeiffer craniosynostotic disorders. Hum Genet 1997; 101 (1) 47-50
  • 62 Meyers GA, Day D, Goldberg R , et al. FGFR2 exon IIIa and IIIc mutations in Crouzon, Jackson-Weiss, and Pfeiffer syndromes: evidence for missense changes, insertions, and a deletion due to alternative RNA splicing. Am J Hum Genet 1996; 58 (3) 491-498
  • 63 Ron N, Leung S, Carney E, Gerber A, David KL. A case of Beare-Stevenson syndrome with unusual manifestations. Am J Case Rep 2016; 17: 254-258
  • 64 Tao YC, Slavotinek AM, Vargervik K, Oberoi S. Hypodontia in Beare-Stevenson syndrome: an example of dental anomalies in FGFR-related craniosynostosis syndromes. Cleft Palate Craniofac J 2010; 47 (3) 253-258
  • 65 Barge-Schaapveld DQ, Brooks AS, Lequin MH, van Spaendonk R, Vermeulen RJ, Cobben JM. Beare-Stevenson syndrome: two Dutch patients with cerebral abnormalities. Pediatr Neurol 2011; 44 (4) 303-307
  • 66 Antley R, Bixler D. Trapezoidocephaly, midfacial hypoplasia and cartilage abnormalities with multiple synostoses and skeletal fractures. Birth Defects Orig Artic Ser 1975; 11 (2) 397-401
  • 67 McGlaughlin KL, Witherow H, Dunaway DJ, David DJ, Anderson PJ. Spectrum of Antley-Bixler syndrome. J Craniofac Surg 2010; 21 (5) 1560-1564
  • 68 But WM, Lo IF, Shek CC, Tse WY, Lam ST. Ambiguous genitalia, impaired steroidogenesis, and Antley-Bixler syndrome in a patient with P450 oxidoreductase deficiency. Hong Kong Med J 2010; 16 (1) 59-62
  • 69 McGillivray G, Savarirayan R, Cox TC , et al. Familial scaphocephaly syndrome caused by a novel mutation in the FGFR2 tyrosine kinase domain. J Med Genet 2005; 42 (8) 656-662
  • 70 Akai T, Yamamoto K, Iizuka H , et al. Syndromic craniosynostosis with elbow joint contracture. Pediatr Neurosurg 2006; 42 (2) 108-112
  • 71 Aravidis C, Konialis CP, Pangalos CG, Kosmaidou Z. A familial case of Muenke syndrome. Diverse expressivity of the FGFR3 Pro252Arg mutation—case report and review of the literature. J Matern Fetal Neonatal Med 2014; 27 (14) 1502-1506
  • 72 Kruszka P, Addissie YA, Yarnell CM , et al. Muenke syndrome: An international multicenter natural history study. Am J Med Genet A 2016; 170A (4) 918-929
  • 73 Chen F, Sarabipour S, Hristova K. Multiple consequences of a single amino acid pathogenic RTK mutation: the A391E mutation in FGFR3. PLoS ONE 2013; 8 (2) e56521
  • 74 Herman TE, Sargar K, Siegel MJ. Crouzono-dermo-skeletal syndrome, Crouzon syndrome with acanthosis nigricans syndrome. J Perinatol 2014; 34 (2) 164-165
  • 75 Rousseau F, Legeai-Mallet L, Le Merrer M, Munnich A, Maroteaux P. Common mutations in the gene encoding fibroblast growth factor receptor 3 account for achondroplasia, hypochondroplasia and thanatophoric dysplasia. Acta Paediatr Suppl 1996; 417: 33-38
  • 76 Richette P, Bardin T, Stheneur C. Achondroplasia: from genotype to phenotype. Joint Bone Spine 2008; 75 (2) 125-130
  • 77 Song SH, Balce GC, Agashe MV , et al. New proposed clinico-radiologic and molecular criteria in hypochondroplasia: FGFR 3 gene mutations are not the only cause of hypochondroplasia. Am J Med Genet A 2012; 158A (10) 2456-2462
  • 78 Nerlich AG, Freisinger P, Bonaventure J. Radiological and histological variants of thanatophoric dysplasia are associated with common mutations in FGFR-3. Am J Med Genet 1996; 63 (1) 155-160
  • 79 Ma L, Golden S, Wu L, Maxson R. The molecular basis of Boston-type craniosynostosis: the Pro148—>His mutation in the N-terminal arm of the MSX2 homeodomain stabilizes DNA binding without altering nucleotide sequence preferences. Hum Mol Genet 1996; 5 (12) 1915-1920
  • 80 Yoon WJ, Cho YD, Cho KH , et al. The Boston-type craniosynostosis mutation MSX2 (P148H) results in enhanced susceptibility of MSX2 to ubiquitin-dependent degradation. J Biol Chem 2008; 283 (47) 32751-32761
  • 81 Janssen A, Hosen MJ, Jeannin P, Coucke PJ, De Paepe A, Vanakker OM. Second family with the Boston-type craniosynostosis syndrome: novel mutation and expansion of the clinical spectrum. Am J Med Genet A 2013; 161A (9) 2352-2357
  • 82 Robin NH, Segel B, Carpenter G, Muenke M. Craniosynostosis, Philadelphia type: a new autosomal dominant syndrome with sagittal craniosynostosis and syndactyly of the fingers and toes. Am J Med Genet 1996; 62 (2) 184-191
  • 83 Barroso E, Berges-Soria J, Benito-Sanz S , et al. Identification of the fourth duplication of upstream IHH regulatory elements, in a family with craniosynostosis Philadelphia type, helps to define the phenotypic characterization of these regulatory elements. Am J Med Genet A 2015; 167A (4) 902-906
  • 84 Hollway GE, Phillips HA, Adès LC, Haan EA, Mulley JC. Localization of craniosynostosis Adelaide type to 4p16. Hum Mol Genet 1995; 4 (4) 681-683
  • 85 Adès LC, Mulley JC, Senga IP, Morris LL, David DJ, Haan EA. Jackson-Weiss syndrome: clinical and radiological findings in a large kindred and exclusion of the gene from 7p21 and 5qter. Am J Med Genet 1994; 51 (2) 121-130
  • 86 Van Maldergem L, Siitonen HA, Jalkh N , et al. Revisiting the craniosynostosis-radial ray hypoplasia association: Baller-Gerold syndrome caused by mutations in the RECQL4 gene. J Med Genet 2006; 43 (2) 148-152
  • 87 Kellermayer R. The versatile RECQL4. Genet Med 2006; 8 (4) 213-216
  • 88 Ng AJ, Walia MK, Smeets MF , et al. The DNA helicase recql4 is required for normal osteoblast expansion and osteosarcoma formation. PLoS Genet 2015; 11 (4) e1005160
  • 89 Genitori L, Lang D, Philip N, Cavalheiro S, Lena G, Choux M. Cranioectodermal dysplasia with sagittal craniosynostosis (Sensenbrenner's syndrome): case report and review of the literature. Br J Neurosurg 1992; 6 (6) 601-606
  • 90 Lin AE, Traum AZ, Sahai I , et al. Sensenbrenner syndrome (Cranioectodermal dysplasia): clinical and molecular analyses of 39 patients including two new patients. Am J Med Genet A 2013; 161A (11) 2762-2776
  • 91 Moosa S, Obregon MG, Altmüller J , et al. Novel IFT122 mutations in three Argentinian patients with cranioectodermal dysplasia: Expanding the mutational spectrum. Am J Med Genet A 2016; 170 (5) 1295-1301
  • 92 Evers C, Jungwirth MS, Morgenthaler J , et al. Craniofrontonasal syndrome in a male due to chromosomal mosaicism involving EFNB1: further insights into a genetic paradox. Clin Genet 2014; 85 (4) 347-353
  • 93 van den Elzen ME, Twigg SR, Goos JA , et al. Phenotypes of craniofrontonasal syndrome in patients with a pathogenic mutation in EFNB1. Eur J Hum Genet 2014; 22 (8) 995-1001
  • 94 Kalff-Suske M, Wild A, Topp J , et al. Point mutations throughout the GLI3 gene cause Greig cephalopolysyndactyly syndrome. Hum Mol Genet 1999; 8 (9) 1769-1777
  • 95 Hurst JA, Jenkins D, Vasudevan PC , et al. Metopic and sagittal synostosis in Greig cephalopolysyndactyly syndrome: five cases with intragenic mutations or complete deletions of GLI3. Eur J Hum Genet 2011; 19 (7) 757-762
  • 96 Biesecker LG. The Greig cephalopolysyndactyly syndrome. Orphanet J Rare Dis 2008; 3: 10
  • 97 Jamsheer A, Sowińska A, Trzeciak T, Jamsheer-Bratkowska M, Geppert A, Latos-Bieleńska A. Expanded mutational spectrum of the GLI3 gene substantiates genotype-phenotype correlations. J Appl Genet 2012; 53 (4) 415-422
  • 98 Démurger F, Ichkou A, Mougou-Zerelli S , et al. New insights into genotype-phenotype correlation for GLI3 mutations. Eur J Hum Genet 2015; 23 (1) 92-102
  • 99 Sood S, Eldadah ZA, Krause WL, McIntosh I, Dietz HC. Mutation in fibrillin-1 and the Marfanoid-craniosynostosis (Shprintzen-Goldberg) syndrome. Nat Genet 1996; 12 (2) 209-211
  • 100 Kosaki K, Takahashi D, Udaka T , et al. Molecular pathology of Shprintzen-Goldberg syndrome. Am J Med Genet A 2006; 140 (1) 104-108 , author reply 109–110
  • 101 Robinson PN, Neumann LM, Demuth S , et al. Shprintzen-Goldberg syndrome: fourteen new patients and a clinical analysis. Am J Med Genet A 2005; 135 (3) 251-262
  • 102 Adès LC, Sullivan K, Biggin A , et al. FBN1, TGFBR1, and the Marfan-craniosynostosis/mental retardation disorders revisited. Am J Med Genet A 2006; 140 (10) 1047-1058
  • 103 Li B, Zhou T, Zou Y. Mid1/Mid2 expression in craniofacial development and a literature review of X-linked opitz syndrome. Mol Genet Genomic Med 2016; 4 (1) 95-105
  • 104 De Falco F, Cainarca S, Andolfi G , et al. X-linked Opitz syndrome: novel mutations in the MID1 gene and redefinition of the clinical spectrum. Am J Med Genet A 2003; 120A (2) 222-228
  • 105 Bhoj EJ, Li D, Harr MH , et al. Expanding the SPECC1L mutation phenotypic spectrum to include Teebi hypertelorism syndrome. Am J Med Genet A 2015; 167A (11) 2497-2502