Journal of Pediatric Biochemistry 2016; 06(02): 103-109
DOI: 10.1055/s-0036-1593813
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Protective Effects of Melatonin on Free Radical-Induced Oxidative Stress

Elisa Belvisi
1   Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
,
Silvia Carloni
2   Department of Biomolecular Science, University of Urbino “Carlo Bo,” Urbino, Italy
,
Monica Tei
1   Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
,
Maria Gabriella Alagna
1   Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
,
Antonino Santacroce
1   Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
,
Marina Riccitelli
1   Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
,
Francesco Bazzini
1   Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
,
Mariangela Longini
1   Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
,
Giuseppe Buonocore
1   Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
,
Serafina Perrone
1   Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
,
on behalf of the “Gruppo di Studio di Biochimica Clinica Neonatale della Società Italiana di Neonatologia” › Institutsangaben
Weitere Informationen

Publikationsverlauf

02. Juni 2016

26. Juni 2016

Publikationsdatum:
25. Oktober 2016 (online)

Abstract

Melatonin is both a potent free radical (FR) scavenger and a broad-spectrum antioxidant. It seems to give useful effects in newborn disorders as has been shown for adults. The unbalance between prooxidant and antioxidant factors leads to oxidative stress (OS) and damage to biomolecules. OS is involved in the pathogenesis of many chronic diseases in adulthood, such as atherosclerosis, cancer, diabetes, rheumatoid arthritis, stroke and postischemic perfusion injury, myocardial infarction and cardiovascular diseases, chronic inflammation, septic shock, aging, and other degenerative diseases Nevertheless, there is growing evidence that OS is involved in the pathogenesis of many fetal and newborn diseases. The unbalance between a low-efficient antioxidant system and an overproduction of FR, especially in preterm babies, leads to the so-called FR-related disease of newborns, characterized by several cellular, tissue, and organ damage (kidney, retina, lung, bowel, and brain injury). Among antioxidants, melatonin (MLT) shows high antioxidant and anti-inflammatory properties: it is able to scavenge dangerous FR; it induces the production of antioxidant enzymes; it has no prooxidant effects; and it is safe. During the last decade, MLT has started to be considered as an attractive option to minimize as much as possible the sequelae from OS damage: in damaged lung tissue, MLT attenuates the hyperoxia-induced depletion of antioxidant enzyme activities and reduces proinflammatory cytokines; in animal model affected with necrotizing enterocolitis (NEC), MLT reduces tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β), lipid peroxidation products, reactive oxygen species/reactive nitrogen species (ROS/RNS), and it reverses lipopolysaccharide-induced motility disturbances; in developing retina, MLT prevents retinal ganglion cell death through its antioxidant and anti-inflammatory properties. In particular, MLT appears as a very interesting drug to reduce the neurological sequelae from hypoxic-ischemic brain injury. Because of its lipophilic properties, MLT easily crosses most biological cell membranes, including the placenta and the blood–brain barrier and may prevent neonatal brain injury in early stage of life. The neuroprotective role of MLT calls for further investigation in the newborn infants.

 
  • References

  • 1 Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?. Lancet 1994; 344 (8924) 721-724
  • 2 Poulsen HE, Prieme H, Loft S. Role of oxidative DNA damage in cancer initiation and promotion. Eur J Cancer Prev 1998; 7 (1) 9-16
  • 3 Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev 1994; 74 (1) 139-162
  • 4 Uday B, Dipak D, Ranajit BK. Reactive oxygen species: oxidative damage and pathogenesis. Curr Sci 1990; 77: 658-666
  • 5 Fang YZ, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition 2002; 18 (10) 872-879
  • 6 Fridovich I. Fundamental aspects of reactive oxygen species, or what's the matter with oxygen?. Ann N Y Acad Sci 1999; 893: 13-18
  • 7 Perrone S, Tataranno ML, Negro S , et al. Early identification of the risk for free radical-related diseases in preterm newborns. Early Hum Dev 2010; 86 (4) 241-244
  • 8 Gilgun-Sherki Y, Melamed E, Offen D. Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood–brain barrier. Neuropharmacology 2001; 40 (8) 959-975
  • 9 Salganik RI. The benefits and hazards of antioxidants: controlling apoptosis and other protective mechanisms in cancer patients and the human population. J Am Coll Nutr 2001; 20 (5, Suppl) 464S-472S , discussion 473S–475S
  • 10 Buonocore G, Perrone S, Tataranno ML. Oxygen toxicity: chemistry and biology of reactive oxygen species. Semin Fetal Neonatal Med 2010; 15 (4) 186-190
  • 11 Raikhlin NT, Kvetnoy IM, Kadagidze ZG , et al. Immunomorphological studies on synthesis of melatonin in enterochromaffine cells. Acta Histochem Cytochem 1978; 11: 75-77
  • 12 Kvetnoĭ IM, Raĭkhlin NT, Tolkachev VN. [Chromatographic detection of melatonin (5-methoxy-N-acetyltryptamine) and its biological precursors in enterochromaffin cells]. Dokl Akad Nauk SSSR 1975; 221 (1) 226-227
  • 13 Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 2009; 44 (4) 175-200
  • 14 Lerner AB, Case JD, Takahashi Y. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. J Biol Chem 1960; 235: 1992-1997
  • 15 Rousseau A, Petrén S, Plannthin J, Eklundh T, Nordin C. Serum and cerebrospinal fluid concentrations of melatonin: a pilot study in healthy male volunteers. J Neural Transm (Vienna) 1999; 106 (9–10) 883-888
  • 16 Vakkuri O, Leppäluoto J, Kauppila A. Oral administration and distribution of melatonin in human serum, saliva and urine. Life Sci 1985; 37 (5) 489-495
  • 17 Bornman MS, Schulenburg GW, Reif S, Oosthuizen JM, De Wet EH, Luus HG. Seminal plasma melatonin and semen parameters. S Afr Med J 1992; 81 (9) 485-486
  • 18 Kivelä A, Kauppila A, Leppäluoto J, Vakkuri O. Serum and amniotic fluid melatonin during human labor. J Clin Endocrinol Metab 1989; 69 (5) 1065-1068
  • 19 Agez L, Laurent V, Guerrero HY, Pévet P, Masson-Pévet M, Gauer F. Endogenous melatonin provides an effective circadian message to both the suprachiasmatic nuclei and the pars tuberalis of the rat. J Pineal Res 2009; 46 (1) 95-105
  • 20 Klein DC, Moore RY. Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res 1979; 174 (2) 245-262
  • 21 Axelrod J, Weissbach H. Enzymatic O-methylation of N-acetylserotonin to melatonin. Science 1960; 131 (3409) 1312-1312
  • 22 Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?. J Pineal Res 2007; 42 (1) 28-42
  • 23 Paradies G, Petrosillo G, Paradies V, Reiter RJ, Ruggiero FM. Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res 2010; 48 (4) 297-310
  • 24 Tan DX, Manchester LC, Terron MP, Flores LJ, Tamura H, Reiter RJ. Melatonin as a naturally occurring co-substrate of quinone reductase-2, the putative MT3 melatonin membrane receptor: hypothesis and significance. J Pineal Res 2007; 43 (4) 317-320
  • 25 Ceraulo L, Ferrugia M, Tesoriere L, Segreto S, Livrea MA, Turco Liveri V. Interactions of melatonin with membrane models: portioning of melatonin in AOT and lecithin reversed micelles. J Pineal Res 1999; 26 (2) 108-112
  • 26 Reiter RJ, Tan DX, Burkhardt S. Reactive oxygen and nitrogen species and cellular and organismal decline: amelioration with melatonin. Mech Ageing Dev 2002; 123 (8) 1007-1019
  • 27 Acuña-Castroviejo D, Martín M, Macías M , et al. Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res 2001; 30 (2) 65-74
  • 28 Chen YC, Tain YL, Sheen JM, Huang LT. Melatonin utility in neonates and children. J Formos Med Assoc 2012; 111 (2) 57-66
  • 29 Tamura H, Takasaki A, Taketani T , et al. Melatonin as a free radical scavenger in the ovarian follicle. Endocr J 2013; 60 (1) 1-13
  • 30 Reiter RJ, Tan DX, Manchester LC, Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 2001; 34 (2) 237-256
  • 31 Mishra OP, Delivoria-Papadopoulos M. Lipid peroxidation in developing fetal guinea pig brain during normoxia and hypoxia. Brain Res Dev Brain Res 1989; 45 (1) 129-135
  • 32 Esposito E, Cuzzocrea S. Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 2010; 8 (3) 228-242
  • 33 Dragicevic N, Copes N, O'Neal-Moffitt G , et al. Melatonin treatment restores mitochondrial function in Alzheimer's mice: a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res 2011; 51 (1) 75-86
  • 34 Malhotra S, Sawhney G, Pandhi P. The therapeutic potential of melatonin: a review of the science. MedGenMed 2004; 6 (2) 46
  • 35 Arendt J. Safety of melatonin in long-term use (?). J Biol Rhythms 1997; 12 (6) 673-681
  • 36 Schernhammer ES, Giobbie-Hurder A, Gantman K , et al. A randomized controlled trial of oral melatonin supplementation and breast cancer biomarkers. Cancer Causes Control 2012; 23 (4) 609-616
  • 37 Luboshitzky R, Shen-Orr Z, Nave R, Lavi S, Lavie P. Melatonin administration alters semen quality in healthy men. J Androl 2002; 23 (4) 572-578
  • 38 Gitto E, Reiter RJ, Karbownik M , et al. Causes of oxidative stress in the pre- and perinatal period. Biol Neonate 2002; 81 (3) 146-157
  • 39 Saugstad OD. Bronchopulmonary dysplasia-oxidative stress and antioxidants. Semin Neonatol 2003; 8 (1) 39-49
  • 40 Saugstad OD. Oxidative stress in the newborn – a 30-year perspective. Biol Neonate 2005; 88 (3) 228-236
  • 41 Saugstad OD. Hypoxanthine as an indicator of hypoxia: its role in health and disease through free radical production. Pediatr Res 1988; 23 (2) 143-150
  • 42 Haynes RL, Folkerth RD, Keefe RJ , et al. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol 2003; 62 (5) 441-450
  • 43 Clyman RI, Saugstad OD, Mauray F. Reactive oxygen metabolites relax the lamb ductus arteriosus by stimulating prostaglandin production. Circ Res 1989; 64 (1) 1-8
  • 44 Archer SL, Peterson D, Nelson DP , et al. Oxygen radicals and antioxidant enzymes alter pulmonary vascular reactivity in the rat lung. J Appl Physiol (1985) 1989; 66 (1) 102-111
  • 45 Sanderud J, Bjøro K, Saugstad OD. Oxygen radicals stimulate thromboxane and prostacyclin synthesis and induce vasoconstriction in pig lungs. Scand J Clin Lab Invest 1993; 53 (5) 447-455
  • 46 Saugstad OD. Chronic lung disease: the role of oxidative stress. Biol Neonate 1998; 74 (Suppl. 01) 21-28
  • 47 Pan L, Fu J-H, Xue X-D, Xu W, Zhou P, Wei B. Melatonin protects against oxidative damage in a neonatal rat model of bronchopulmonary dysplasia. World J Pediatr 2009; 5 (3) 216-221
  • 48 Gitto E, Reiter RJ, Sabatino G , et al. Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: improvement with melatonin treatment. J Pineal Res 2005; 39 (3) 287-293
  • 49 Stewart CJ, Marrs ECL, Nelson A , et al. Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis. PLoS One 2013; 8 (8) e73465
  • 50 Perrone S, Tataranno ML, Negro S , et al. May oxidative stress biomarkers in cord blood predict the occurrence of necrotizing enterocolitis in preterm infants?. J Matern Fetal Neonatal Med 2012; 25 (Suppl. 01) 128-131
  • 51 Perrone S, Vezzosi P, Longini M , et al. Biomarkers of oxidative stress in babies at high risk for retinopathy of prematurity. Front Biosci (Elite Ed) 2009; 1: 547-552
  • 52 Kaur C, Sivakumar V, Robinson R, Foulds WS, Luu CD, Ling EA. Neuroprotective effect of melatonin against hypoxia-induced retinal ganglion cell death in neonatal rats. J Pineal Res 2013; 54 (2) 190-206
  • 53 Siu AW, Maldonado M, Sanchez-Hidalgo M, Tan DX, Reiter RJ. Protective effects of melatonin in experimental free radical-related ocular diseases. J Pineal Res 2006; 40 (2) 101-109
  • 54 Park SW, Lee HS, Sung MS, Kim SJ. The effect of melatonin on retinal ganglion cell survival in ischemic retina. Chonnam Med J 2012; 48 (2) 116-122
  • 55 Vexler ZS, Ferriero DM. Molecular and biochemical mechanisms of perinatal brain injury. Semin Neonatol 2001; 6 (2) 99-108
  • 56 Mukerji A, Shah V, Shah PS. Periventricular/intraventricular hemorrhage and neurodevelopmental outcomes: a meta-analysis. Pediatrics 2015; 136 (6) 1132-1143
  • 57 Inder TE, Volpe JJ. Mechanisms of perinatal brain injury. Semin Neonatol 2000; 5 (1) 3-16
  • 58 Yager JY, Thornhill JA. The effect of age on susceptibility to hypoxic-ischemic brain damage. Neurosci Biobehav Rev 1997; 21 (2) 167-174
  • 59 du Plessis AJ, Volpe JJ. Perinatal brain injury in the preterm and term newborn. Curr Opin Neurol 2002; 15 (2) 151-157
  • 60 Perrone S, Tataranno LM, Stazzoni G, Ramenghi L, Buonocore G. Brain susceptibility to oxidative stress in the perinatal period. J Matern Fetal Neonatal Med 2015; 28 (Suppl. 01) 2291-2295
  • 61 Vitte PA, Harthe C, Lestage P, Claustrat B, Bobillier P. Plasma, cerebrospinal fluid, and brain distribution of 14C-melatonin in rat: a biochemical and autoradiographic study. J Pineal Res 1988; 5 (5) 437-453
  • 62 Menendez-Pelaez A, Reiter RJ. Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J Pineal Res 1993; 15 (2) 59-69
  • 63 Gupta YK, Gupta M, Kohli K. Neuroprotective role of melatonin in oxidative stress vulnerable brain. Indian J Physiol Pharmacol 2003; 47 (4) 373-386
  • 64 Perrone S, Stazzoni G, Tataranno ML, Buonocore G. New pharmacologic and therapeutic approaches for hypoxic-ischemic encephalopathy in the newborn. J Matern Fetal Neonatal Med 2012; 25 (Suppl. 01) 83-88
  • 65 Cilio MR, Ferriero DM. Synergistic neuroprotective therapies with hypothermia. Semin Fetal Neonatal Med 2010; 15 (5) 293-298
  • 66 Robertson NJ, Faulkner S, Fleiss B , et al. Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain 2013; 136 (Pt 1) 90-105
  • 67 Carloni S, Perrone S, Buonocore G, Longini M, Proietti F, Balduini W. Melatonin protects from the long-term consequences of a neonatal hypoxic-ischemic brain injury in rats. J Pineal Res 2008; 44 (2) 157-164
  • 68 Welin AK, Svedin P, Lapatto R , et al. Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res 2007; 61 (2) 153-158
  • 69 Jahnke G, Marr M, Myers C, Wilson R, Travlos G, Price C. Maternal and developmental toxicity evaluation of melatonin administered orally to pregnant Sprague–Dawley rats. Toxicol Sci 1999; 50 (2) 271-279
  • 70 Miller SL, Yan EB, Castillo-Meléndez M, Jenkin G, Walker DW. Melatonin provides neuroprotection in the late-gestation fetal sheep brain in response to umbilical cord occlusion. Dev Neurosci 2005; 27 (2–4) 200-210
  • 71 Hutton LC, Abbass M, Dickinson H, Ireland Z, Walker DW. Neuroprotective properties of melatonin in a model of birth asphyxia in the spiny mouse (Acomys cahirinus). Dev Neurosci 2009; 31 (5) 437-451
  • 72 Bouslama M, Renaud J, Olivier P , et al. Melatonin prevents learning disorders in brain-lesioned newborn mice. Neuroscience 2007; 150 (3) 712-719
  • 73 Kaur C, Sivakumar V, Ling EA. Melatonin protects periventricular white matter from damage due to hypoxia. J Pineal Res 2010; 48 (3) 185-193
  • 74 Olivier P, Fontaine RH, Loron G , et al. Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats. PLoS One 2009; 4 (9) e7128
  • 75 Fulia F, Gitto E, Cuzzocrea S , et al. Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin. J Pineal Res 2001; 31 (4) 343-349
  • 76 Okatani Y, Okamoto K, Hayashi K, Wakatsuki A, Tamura S, Sagara Y. Maternal–fetal transfer of melatonin in pregnant women near term. J Pineal Res 1998; 25 (3) 129-134
  • 77 Miller SL, Yawno T, Alers NO , et al. Antenatal antioxidant treatment with melatonin to decrease newborn neurodevelopmental deficits and brain injury caused by fetal growth restriction. J Pineal Res 2014; 56 (3) 283-294
  • 78 Aly H, Elmahdy H, El-Dib M , et al. Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J Perinatol 2015; 35 (3) 186-191