CC BY-NC-ND 4.0 · Arquivos Brasileiros de Neurocirurgia: Brazilian Neurosurgery 2019; 38(03): 166-174
DOI: 10.1055/s-0036-1594302
Review Article | Artigo de Revisão
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Use of Models of Finite Elements in the Biomechanics of the Lumbar Spine

Uso de modelos de elementos finitos na biomecânica da coluna lombar
1   Department of Neurosurgery, Universidade Federal de São Paulo, São Paulo, SP, Brazil
3   Postgraduation in Biomedical Engineering, Universidade de Brasília, Brasília, DF, Brazil
4   Spinal Tech Laboratory, Brasília, DF, Brazil
,
Lourdes Mattos Brasil
3   Postgraduation in Biomedical Engineering, Universidade de Brasília, Brasília, DF, Brazil
,
Alex Sandro Araújo Silva
2   Department of Mechanical Engineering, Universidade Federal do Semi-Árido, Mossoró, RN, Brazil
,
Leandro Xavier Cardoso
4   Spinal Tech Laboratory, Brasília, DF, Brazil
› Author Affiliations
Further Information

Publication History

14 June 2016

12 September 2016

Publication Date:
06 March 2017 (online)

Abstract

The same correspondence between general mechanics and civil engineering is true for biomechanics and surgical implants. Currently, numerous mechanical processes are required until a prosthesis is offered to its target audience. These processes typically require human or animal vertebrae, as well as all the complexity involving such tissues, for example, an ethics committee, the availability of materials, etc. Thus, finite element models (FEMs) have become a great option to carry out biomechanical tests independently from anatomical specimens, and, at the same time, to obtain mathematical data to assist in the general physical understanding. The present review discusses the mechanical principles involved in bioengineering, clarifies the steps for the development of FEMs, and shows application scenarios for these models. To the knowledge of the authors, the present paper is the first review study in Portuguese aimed to health care professionals in a language accessible to them.

Resumo

A mesma relação de correspondência que existe entre mecânica geral e construção civil ocorre entre biomecânica e implantes cirúrgicos. Atualmente, existem inúmeros processos mecânicos que são necessários até que uma prótese seja oferecida ao público alvo. Estes processos, normalmente, exigem a presença de vértebras humanas, ou mesmo de animais, e têm toda a complexidade que envolve o uso destes tecidos, como comissão de ética, disponibilidade de material, etc. Desta forma, os modelos de elementos finitos (MEFs) passaram a ser uma ótima opção, como meio de realizar testes biomecânicos e de obter independência de peças anatômicas e, ao mesmo tempo, de obter dados matemáticos que auxiliarão no entendimento geral físico. A presente revisão discute os princípios mecânicos que envolvem a bioengenharia; ademais, clarifica os passos para o desenvolvimento dos MEFs, e finaliza mostrando cenários de aplicação destes modelos. Ao conhecimento dos autores, este artigo é o primeiro estudo de revisão em português voltado para profissionais da saúde, com uma linguagem acessível para o meio médico.

 
  • References

  • 1 Denozière G, Ku DN. Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc. J Biomech 2006; 39 (04) 766-775
  • 2 Hutton DV. Fundamentals of Finite Element Analysis. McGraw-Hill Science; 2003
  • 3 Dreischarf M, Zander T, Shirazi-Adl A. , et al. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech 2014; 47 (08) 1757-1766
  • 4 Kurutz M. Finite Element Modelling of Human Lumbar Spine. In: Moratal D. , ed. Finite Element Analysis. 1st ed. INTECH Open Access Publisher; 2010: 210-236
  • 5 Bauer JS, Sidorenko I, Mueller D. , et al. Prediction of bone strength by μCT and MDCT-based finite-element-models: how much spatial resolution is needed?. Eur J Radiol 2014; 83 (01) e36-e42
  • 6 Zhang QH, Teo EC. Finite element application in implant research for treatment of lumbar degenerative disc disease. Med Eng Phys 2008; 30 (10) 1246-1256
  • 7 Teyfik D, Basgül C. The Pullout Performance of Pedicle Screws. 1st ed. New York, NY: Springer; 2015
  • 8 Twomey L, Taylor J. Flexion creep deformation and hysteresis in the lumbar vertebral column. Spine 1982; 7 (02) 116-122
  • 9 Gilbertson LG, Goel VK, Kong WZ, Clausen JD. Finite element methods in spine biomechanics research. Crit Rev Biomed Eng 1995; 23 (5-6): 411-473
  • 10 Beer FP, Johnston ER, DeWolf JT. Mechanics of Materials. McGraw-Hill Higher Education; 2006
  • 11 Rittel D, Silva ML, Poon B, Ravichandran G. Thermomechanical behavior of single crystalline tantalum in the static and dynamic regime. Mech Mater 2009; 41 (12) 1323-1329
  • 12 Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Chiba K. Biomechanical evaluation of lumbar pedicle screws in spondylolytic vertebrae: comparison of fixation strength between the traditional trajectory and a cortical bone trajectory. J Neurosurg Spine 2016; 24 (06) 910-915
  • 13 Bathe K. Finite Element Procedures. Prentice Hall; 2006. . doi: DOI: 10.2307/962758
  • 14 Brekelmans WA, Poort HW, Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand 1972; 43 (05) 301-317
  • 15 Yoganandan N, Myklebust JB, Ray G, Sances Jr A. Mathematical and finite element analysis of spine injuries. Crit Rev Biomed Eng 1987; 15 (01) 29-93
  • 16 Rohlmann A, Zander T, Schmidt H, Wilke HJH-J, Bergmann G. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech 2006; 39 (13) 2484-2490
  • 17 Zander T, Rohlmann A, Bergmann G. Influence of different artificial disc kinematics on spine biomechanics. Clin Biomech (Bristol, Avon) 2009; 24 (02) 135-142
  • 18 Amaritsakul Y, Chao C-K, Lin J. Multiobjective optimization design of spinal pedicle screws using neural networks and genetic algorithm: mathematical models and mechanical validation. Comput Math Methods Med 2013; 2013: 462875
  • 19 Chazistergos P, Ferentinos G. . Investigation of the Behaviour of the Pedicle Screw-Vertebral BoneComplex, When Subjected to Pure Pull-Out Loads. 2006. http://ansys.com/staticas-sets/ANSYS/staticassets/resourcelibrary/confpaper/2006-Int-AN-SYSConf-126.pdf
  • 20 Macedo AP, Luiz H, Defino A, Shimano AC. Biomechanical Evalua- tion of a Spinal Screw Fixation System by the Finite Element Method. Int J Morphol 2015; 33 (01) 318-326
  • 21 Hansson TH, Keller TS, Spengler DM. Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. J Orthop Res 1987; 5 (04) 479-487
  • 22 Lee JK, Amorosa L, Cho SK, Weidenbaum M, Kim Y. Recurrent lumbar disk herniation. J Am Acad Orthop Surg 2010; 18 (06) 327-337
  • 23 Lee S-H, Im YJ, Kim KT, Kim YH, Park WM, Kim K. Comparison of cervical spine biomechanics after fixed- and mobile-core artificial disc replacement: a finite element analysis. Spine 2011; 36 (09) 700-708
  • 24 Baroud G, Nemes J, Heini P, Steffen T. Load shift of the intervertebral disc after a vertebroplasty: a finite-element study. Eur Spine J 2003; 12 (04) 421-426
  • 25 Graeff C, Marin F, Petto H. , et al. High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis. Bone 2013; 52 (02) 568-577
  • 26 Shirazi-Adl A. Biomechanics of the lumbar spine in sagittal/lateral moments. Spine 1994; 19 (21) 2407-2414
  • 27 Shih KS, Hsu CC, Hou SM, Yu SC, Liaw CK. Comparison of the bending performance of solid and cannulated spinal pedicle screws using finite element analyses and biomechanical tests. Med Eng Phys 2015; 37 (09) 879-884
  • 28 Schmidt H, Heuer F, Wilke H-J. Which axial and bending stiffnesses of posterior implants are required to design a flexible lumbar stabilization system?. J Biomech 2009; 42 (01) 48-54
  • 29 Huang H-L, Tsai M-T, Lin D-J, Chien C-S, Hsu J-T. A new method to evaluate the elastic modulus of cortical bone by using a combined computed tomography and finite element approach. Comput Biol Med 2010; 40 (04) 464-468
  • 30 Choi K, Kuhn JL, Ciarelli MJ, Goldstein SA. The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus. J Biomech 1990; 23 (11) 1103-1113
  • 31 Hsu C-C, Chao C-K, Wang J-L, Hou S-M, Tsai Y-T, Lin J. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. J Orthop Res 2005; 23 (04) 788-794
  • 32 Malandrino A, Planell JA, Lacroix D. Statistical factorial analysis on the poroelastic material properties sensitivity of the lumbar intervertebral disc under compression, flexion and axial rotation. J Biomech 2009; 42 (16) 2780-2788
  • 33 Noailly J, Lacroix D, Planell JA. Finite element study of a novel intervertebral disc substitute. Spine 2005; 30 (20) 2257-2264
  • 34 Dreischarf M, Rohlmann A, Zhu R, Schmidt H, Zander T. Is it possible to estimate the compressive force in the lumbar spine from intradiscal pressure measurements? A finite element evaluation. Med Eng Phys 2013; 35 (09) 1385-1390
  • 35 Nachemson A. The load on lumbar disks in different positions of the body. Clin Orthop Relat Res 1966; 45 (45) 107-122
  • 36 Nachemson A. Lumbar intradiscal pressure. Experimental studies on post-mortem material. Acta Orthop Scand Suppl 1960; 43: 1-104
  • 37 Fagan MJ, Julian S, Mohsen AM. Finite element analysis in spine research. Proc Inst Mech Eng H 2002; 216 (05) 281-298
  • 38 Goto K, Tajima N, Chosa E. , et al. Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model. J Orthop Sci 2002; 7 (02) 243-246