Subscribe to RSS
DOI: 10.1055/s-0036-1609346
Palladium-Catalyzed Csp3–H Bond mono-Aroyloxylation of O-Alkyl Substituted 2,4,6-Trimethoxybenzaldoxime Ethers
We gratefully thank the National Natural Science Foundation of China (Project Nos. 21476074 and 21676088) for financial support.Publication History
Received: 03 January 2018
Accepted after revision: 20 February 2018
Publication Date:
14 March 2018 (online)
Abstract
A palladium-catalyzed Csp3–H bond mono-aroyloxylation of O-alkyl substituted oxime ethers has been developed by using 2,4,6-trimethoxybenzaldoxime as an exo-type directing group with exclusive site-selectivity. With the wide range of masked aliphatic alcohol substrates and aromatic acid coupling partners, the protocol allows rapid access to various 2-alkyl substituted glycol derivatives in synthetically useful to good yields. The employed directing group is readily removed, accordingly affording valuable functionalized aliphatic alcohols. When the solvent from hybrid DCE/HFIP to CH3CN, non-directed oxidative cross-coupling is observed between the electron-rich aromatic ring of substrates and aromatic acid partners.
Key words
palladium-catalysis - Csp3–H bond functionalization - aroyloxylation - masked aliphatic alcohol - oxidative cross-couplingSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609346.
- Supporting Information
-
References and Notes
- 1a Ryabov AD. Chem. Rev. 1990; 90: 403
- 1b Shilov AE. Shul’pin GB. Chem. Rev. 1997; 97: 2879
- 1c Kondo T. Mitsudo TA. Chem. Rev. 2000; 100: 3205
- 1d Ritleng V. Sirlin C. Pfeffer M. Chem. Rev. 2002; 102: 1731
- 1e Davies HM. L. Beckwith RE. J. Chem. Rev. 2003; 103: 2861
- 1f Dupont J. Consorti CS. Spencer J. Chem. Rev. 2005; 105: 2527
- 1g Alberico D. Scott ME. Lautens M. Chem. Rev. 2007; 107: 174
- 1h Chen X. Engle KM. Wang DH. Yu JQ. Angew. Chem. Int. Ed. 2009; 48: 5094
- 1i Mkhalid IA. I. Barnard JH. Marder TB. Murphy JM. Hartwig JF. Chem. Rev. 2010; 110: 890
- 1j Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
- 1k Colby DA. Bergman RG. Ellman JA. Chem. Rev. 2010; 110: 624
- 1l Sun CL. Li BJ. Shi ZJ. Chem. Rev. 2011; 111: 1293
- 1m Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
- 1n Zhou M. Crabtree RH. Chem. Soc. Rev. 2011; 40: 1875
- 1o Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
- 1p Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
- 1q Huang ZX. Lim HN. Mo FY. Young MC. Dong GB. Chem. Soc. Rev. 2015; 44: 7764
- 1r He J. Wasa M. Chan KS. L. Shao Q. Yu JQ. Chem. Rev. 2017; 117: 8754
- 2a Racowski JM. Dick AR. Sanford MS. J. Am. Chem. Soc. 2009; 131: 10974
- 2b Wang WH. Luo F. Zhang SH. Cheng J. J. Org. Chem. 2010; 75: 2415
- 2c Roane J. Dangulis O. Org. Lett. 2013; 15: 5842
- 2d Wu XS. Zhao Y. Ge HB. Chem. Asian J. 2014; 9: 2736
- 2e Wang Z. Kuninobu Y. Kanai M. Org. Lett. 2014; 16: 4790
- 2f Zhang Q. Wang Y. Yang TG. Li L. Li D. Tetrahedron Lett. 2015; 56: 6136
- 2g Zhao S. Chen FJ. Liu B. Shi BF. Sci. China Chem. 2015; 58: 1302
- 2h Majji G. Rout SK. Rajamanickam S. Guin S. Patel BK. Org. Biomol. Chem. 2016; 14: 8178
- 2i Zhu D. Chang DH. Gan SY. Shi L. RSC Adv. 2016; 6: 27983
- 2j Huang X. Liang X. Yuan J. Ni ZQ. Zhou YF. Pan YJ. Org. Chem. Front. 2017; 4: 163
- 2k Yue Q. Yang TT. Yang YC. Zhang CC. Zhang Q. Li D. Asian J. Org. Chem. 2017; 6: 936
- 2l Raghuvanshi K. Zell D. Ackermann L. Org. Lett. 2017; 19: 1278
- 2m Zheng YX. Han J. Huang ZB. Shi DQ. Zhao YS. Chin. J. Org. Chem. 2017; 37: 2066
- 2n Lin C. Chen ZK. Liu ZX. Zhang YH. Adv. Synth. Catal. 2018; 360: 519
- 3a Wang Y. Shan TT. Yuan YH. Zhang ZW. Guo CF. Yue TL. Food Chem. 2017; 228: 211
- 3b Wilkowska A. Pogorzelski E. Food Chem. 2017; 237: 282
- 3c Dai DN. Huong LT. Thang TD. Ogunwande IA. Chem. Nat. Compd. 2017; 53: 570
- 4a Serafimova R. Todorov M. Pavlov T. Kotov S. Jacob E. Aptula A. Mekenyan O. Chem. Res. Toxicol. 2007; 20: 662
- 4b Citron CA. Rabe P. Dickschat JS. J. Nat. Prod. 2012; 75: 1765
- 4c Keshavarz MH. Pouretedal HR. Med. Chem. Res. 2013; 22: 1238
- 4d Garbeva P. Hordijk C. Gerards S. Boer WD. FEMS Microbiol. Ecol. 2014; 87: 639
- 4e Lima TC. Ferreira AR. Silva DF. Lima EO. Sousa DP. Nat. Prod. Res. 2017; 32: 572
- 5a Simmons EM. Hartwig JF. J. Am. Chem. Soc. 2010; 132: 17092
- 5b Zhang SY. Zhang FM. Tu YQ. Chem. Soc. Rev. 2011; 40: 1937
- 5c Wang GF. Zhang ZQ. Song LH. Green Chem. 2014; 16: 1436
- 5d Mo FY. Tabor JR. Dong GB. Chem. Lett. 2014; 43: 264
- 5e Ferreira EM. Nat. Chem. 2014; 6: 94
- 5f Chen XL. Han J. Zhu Y. Yuan CC. Zhang JY. Zhao YS. Chem. Commun. 2016; 10241
- 6 Desai LV. Stowers KJ. Sanford MS. J. Am. Chem. Soc. 2008; 130: 13285
- 7a Ren Z. Mo FY. Dong GB. J. Am. Chem. Soc. 2012; 134: 16991
- 7b Ren Z. Schulz JE. Dong GB. Org. Lett. 2015; 17: 2696
- 7c Thompson SJ. Thach DQ. Dong GB. J. Am. Chem. Soc. 2015; 137: 11586
- 8a Guo K. Chen XL. Guan MY. Zhao YS. Org. Lett. 2015; 17: 1802
- 8b Guo K. Chen XL. Zhang JY. Zhao YS. Chem. Eur. J. 2015; 21: 17474
- 9 Kang T. Kim H. Kim BJ. G. Chang S. Chem. Commun. 2014; 12073
- 10 Shao LY. Li C. Guo Y. Yu KK. Zhao FY. Qiao WL. Liu HW. Liao DH. Ji YF. RSC Adv. 2016; 6: 78875
- 11a Mochizuki M. Hibino H. Nishiuchi Y. Org. Lett. 2014; 16: 5740
- 11b Wu YW. Chen YQ. Liu T. Eastgate MD. Yu JQ. J. Am. Chem. Soc. 2016; 138: 14554
- 11c Ji WZ. Liu YA. Liao XB. Angew. Chem. Int. Ed. 2016; 55: 13286
- 11d Dherbassy Q. Schwertz G. Chess M. Hazra CK. Delord JW. Colobert F. Chem. Eur. J. 2016; 22: 1735
- 11e Li DD. Niu LF. Ju ZY. Xu ZH. Wu CZ. Eur. J. Org. Chem. 2016; 3090
- 11f Xu JW. Zhang ZZ. Rao WH. Shi BF. J. Am. Chem. Soc. 2016; 138: 10750
- 11g Xu JC. Liu Y. Wang Y. Li YJ. Xu XH. Jin Z. Org. Lett. 2017; 19: 1562
- 11h Wencel-Delord J. Colobert F. Org. Chem. Front. 2016; 3: 394
- 11i Fu XP. Wei ZJ. Xia CC. Shen C. Xu J. Yang Y. Wang K. Zhang PF. Catal. Lett. 2017; 147: 400
- 11j Yoshida M. Kawai K. Tanaka R. Yoshino T. Matsunaga S. Chem. Commun. 2017; 53: 5974
- 12 Synthesis of 3 and 4; General Procedure A mixture of substrate 1 (0.3 mmol), 2 (3.0 equiv), Pd(OAc)2 (10 mol%) and K2S2O8 (3.0 equiv), PhI(OAc)2 (0.3 equiv) were dissolved in DCE/HFIP (3:1, v/v, 3 mL) in a Schlenk tube. The vial was tightly capped and stirred at 80 °C for 24 h. Upon completion, the mixture was dropped into saturated NaHCO3 solution (30 mL) and the mixture was extracted with dichloromethane (3 × 25 mL), and the combined organic layers were dried over anhydrous MgSO4. Finally, the solution was concentrated in vacuo to provide the crude product, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate, 10:1) to give the desired product 3 or 4. (E,Z)-2-(((2,4,6-Trimethoxybenzylidene)amino)oxy)heptyl 4-Methoxybenzoate (3h): Yield: 65%; yellow oil; E/Z = 5.67:1. 1H NMR (400 MHz, CDCl3): δ = 8.42 (s, 0.85 H, E-isomer), 8.41 (s, 0.15 H, Z-isomer), 8.01 (d, J = 9.2 Hz, 2 H), 6.88 (d, J = 8.8 Hz, 2 H), 6.10 (s, 2 H), 4.53–4.52 (m, 1 H), 4.50–4.45 (m, 2 H), 3.84 (s, 3 H), 3.82 (s, 3 H), 3.80 (s, 6 H), 1.83–1.69 (m, 2 H), 1.37–1.33 (m, 2 H), 1.33–1.32 (m, 2 H), 1.28–1.25 (m, 2 H), 0.88 (t, J = 5.7 Hz, 3 H); 13C NMR (100 MHz, CDCl3): δ = 166.4, 163.3, 162.3, 160.1 (2C), 144.2, 131.7 (2C), 122.9, 113.5 (2C), 102.8, 90.8 (2C), 80.3, 65.7, 56.0 (2C), 55.4, 55.3, 31.9, 30.9, 25.1, 22.6, 14.1; HRMS (ESI): m/z [M+ H]+ calcd. for C25H34NO7 +: 460.2335; found: 460.2331.
- 13a Storr TE. Namata F. Greaney MF. Chem. Commun. 2014; 13275
- 13b Ma YY. Zhang DC. Yan ZY. Wang MF. Bian CL. Gao XL. Bunel EE. Lei AW. Org. Lett. 2015; 17: 2174
- 13c Salman M. Zhu ZQ. Huang ZZ. Org. Lett. 2016; 18: 1526
- 14a Lowell AN. Fennie MW. Kozlowski MC. J. Org. Chem. 2011; 76: 6488
- 14b Guo KX. Chen L. Guan MY. Zhao YS. Org. Lett. 2015; 17: 1802
- 15a Iwasaki M. Iyanaga M. Tsuchiya Y. Nishimura Y. Li WJ. Li ZP. Nishihara Y. Chem. Eur. J. 2014; 20: 2459
- 15b Rao WH. Shi BF. Org. Lett. 2015; 17: 2784
- 15c Wang HQ. Zhang S. Wang ZQ. He MH. Xu K. Org. Lett. 2016; 18: 5628
- 16a Zhou LH. Lu WJ. Org. Lett. 2014; 16: 508
- 16b Iwasaki M. Kaneshika W. Tsuchiya Y. Nakajima K. Nishihara Y. J. Org. Chem. 2014; 79: 11330
- 16c Xiong HY. Besset T. Cahard D. Pannecoucke X. J. Org. Chem. 2015; 80: 4204
- 16d Castro LC. M. Chatani N. Chem. Lett. 2015; 44: 410
- 16e Daugulis O. Roane J. Tran LD. Acc. Chem. Res. 2015; 48: 1053
- 16f Ren Z. Dong GB. Organometallics 2016; 35: 1057
- 16g Wang FF. Hu QY. Shu C. Lin ZY. Min DW. Shi TC. Zhang W. Org. Lett. 2017; 19: 3636
- 16h Kommagalla Y. Chatani N. Coord. Chem. Rev. 2017; 350: 117